Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y...Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y, icosahedral structure) could weaken the crystallographic texture and improve the me- chanical strength, the mechanical anisotropy in terms of strength remains in Mg-4%Li-6%Zn-1.2%Y alloy. Failure analysis indicates that for the Mg-4%Li alloy, the fracture surfaces of the tensile samples tested along transverse direction (TD) contain a large number of plastic dimples, whereas the fracture surface exhibits quasi-cleavage characteristic when tensile samples were tested along extrusion direction (ED). For the Mg-4%Li-6%Zn-I.2%Y alloy, typical ductile fracture surfaces can be observed in both "TD" and "ED" samples. Moreover, due to the zonal distribution of broken l-phase particles, the fracture surface of "TD" samples is characterized by the typical "woody fracture".展开更多
基金supported by the National Natural Science Foundation of China projects under Nos. 51271183, 51171192 and 51301172the National Basic Research Program of China (973 Program) project under Grant No. 2013CB632205+3 种基金the National Key Research and Development Program of China project under Grant No. 2016YFB0301105Shenzhen Technology Innovation Plan (CXZZ20140419114548507 and CXZZ20140731091722497)Shenzhen Basic Research Project (JCYJ20150529162228734)the Innovation Fund of Institute of Metal Research (IMR),Chinese Academy of Sciences (CAS)
文摘Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y, icosahedral structure) could weaken the crystallographic texture and improve the me- chanical strength, the mechanical anisotropy in terms of strength remains in Mg-4%Li-6%Zn-1.2%Y alloy. Failure analysis indicates that for the Mg-4%Li alloy, the fracture surfaces of the tensile samples tested along transverse direction (TD) contain a large number of plastic dimples, whereas the fracture surface exhibits quasi-cleavage characteristic when tensile samples were tested along extrusion direction (ED). For the Mg-4%Li-6%Zn-I.2%Y alloy, typical ductile fracture surfaces can be observed in both "TD" and "ED" samples. Moreover, due to the zonal distribution of broken l-phase particles, the fracture surface of "TD" samples is characterized by the typical "woody fracture".