BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor ...BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor for SFFFH.AIM To evaluate the intrinsic risk factors for SFFFH in young military recruits.METHODS X-ray and magnetic resonance imaging data were used for analysis.Acetabular anteversion of the superior acetabulum,acetabular anteversion of the center of the acetabulum(AVcen),anterior acetabular sector angle(AASA),posterior acetabular sector angle,superior acetabular sector angle,neck-shaft angle(NSA),inferior iliac angle(IIA),and ischiopubic angle were calculated.Then,logistic regression,receiver operating characteristic curve analysis,and independent samples t-test were performed to identify the risk factors for SFFFH.RESULTS Based on the results of logistic regression,age[odds ratio(OR):1.33;95%confidence interval(95%CI):1.12-1.65;P=0.0031]and treatment timing(OR:0.86;95%CI:0.75-0.96;P=0.015)could be considered as the indicators for SFFFH.AVcen(P=0.0334),AASA(P=0.0002),NSA(P=0.0007),and IIA(P=0.0316)were considered to have statistical significance.Further,AVcen(OR:1.41;95%CI:1.04-1.95)and AASA(OR:1.44;95%CI:1.21-1.77),especially AASA(area under curve:66.6%),should be paid much more attention due to the higher OR than other indicators.CONCLUSION We have for the first time unveiled that AASA and age could be key risk factors for SFFFH,which further verifies that deficient anterior coverage of the acetabulum might be the main cause of SFFFH.展开更多
Predicting fatigue life of a given specimen using analytical methods can sometimes be challenging. An approach worth considering for this prediction involves employing fracture mechanics. Fracture mechanics can comple...Predicting fatigue life of a given specimen using analytical methods can sometimes be challenging. An approach worth considering for this prediction involves employing fracture mechanics. Fracture mechanics can complement both laboratory experiments and finite element analysis (FEA) in estimating fatigue life of a given specimen, if relevant. In the case of aluminum light poles containing a welded hand-hole, the fatigue life has not yet been thoroughly predicted. The University of Akron has conducted a comprehensive fatigue study on aluminum light poles through various means, albeit without of predicting of said fatigue life of the specimens. AFGROW (Air Force Growth) can be used as a fracture mechanics software to predict fatigue life. ABAQUS was used (for FEA) in conjunction with the AFGROW analysis. The purpose of this study was to ultimately predict the life of the specimens tested in the lab and was achieved with various models including hollow tube and plate models. The plate model process was ultimately found to be the best method for this prediction, yielding results that mimicked the data from the laboratory. Further application for this form of fracture mechanics analysis is still yet to be determined, but for the sake of aluminum light poles, it is possible to predict the fatigue life and utilize said prediction in the field.展开更多
The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were furt...The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were further analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); phase analysis of these alloys was conducted with an X-ray diffraction (XRD). The results show that when Sn is included, growth of the recrystallization grains in the solution-treated A1-Zn-Mg-Cu-Zr alloy is obstructed, the precipitation-free zone (PFZ) of the overaged A1-Zn-Mg-Cu-Zr-Sn alloy becomes narrow, and the grain boundary precipitates are smaller. Consequently, the FCP resistance is higher. In addition, the overaged Sn-containing alloy has considerably higher tensile strength than the alloy without Sn.展开更多
To investigate whether masticatory fatigue affects the fracture resistance and pattern of lower premolars restored with quartz-fiber post-core and full crown, 44 single rooted lower premolars recently extracted from o...To investigate whether masticatory fatigue affects the fracture resistance and pattern of lower premolars restored with quartz-fiber post-core and full crown, 44 single rooted lower premolars recently extracted from orthodontic patients were divided into two groups of 22 each. The crowns of all teeth were removed and endodontically treated and then restored with quartz-fiber post-core and full crown. Twenty-two teeth in one group were selected randomly and circularly loaded at 45° to the long axis of the teeth of 127.4 N at a 6 Hz frequency, and the other group was not delivered to cyclic loading and considered as control. Subsequently, all teeth in two groups were continually loaded to fail at 45° to the long axis of the teeth at a crosshead speed of 1 mm.min-1. The mean destructive force values were (733.88±254.99) and (869.14±280.26) N for the experimental and the control group, respectively, and no statistically significant differences were found between two groups (P〉O.05). Bevel fracture and horizontal fracture in the neck of root were the major fracture mode of the specimens. Under the circumstances of this study, it seems that cyclic loading does not affect the fracture strength and pattern of the quartz-fiber post-core-crown complex.展开更多
The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating load...The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work.展开更多
Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM...Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM)and the fracture surface was under 45°diagonal.Because there exists the interaction between the residual stresses induced by shot peening and the applied cyclic normal tensile stresses in NTFM,which represents as"stress strengthening mechanism",shot peening technology could be used for improving the fatigue fracture resistance(FFR)of springs.However,since 1990s up to date,in addition to regular NTFM,the fatigue fractures occurred of peened springs from time to time are in longitudinal shear fracture mode(LSFM)or transverse shear fracture mode(TSFM)with the increase of applied cyclic shear stresses,which leads to a remarkable decrease of FFR.However,LSFM/TSFM can be avoided effectively by means of shot peening treatment again on the peened springs.The phenomena have been rarely happened before.At present there are few literatures concerning this problem.Based upon the results of force analysis of a spring,there is no interaction between the residual stresses by shot peening and the applied cyclic shear stresses in shear fracture.This;means that the effect of"stress strengthening mechanism"for improving the FFR of LSFM/TSFM is disappeared basically.During shot peening,however,both of residual stress and cyclic plastic deformed microstructure are induced synchronously like"twins"in the surface layer of a spring.It has been found for the first time by means of force analysis and experimental results that the modified microstructure in the"twins"as a"structure strengthening mechanism"can improve the FFR of LSFM/TSFM.At the same time,it is;also shown that the optimum technology of shot peening strengthening must have both"stress strengthening mechanism"and"structure strengthening mechanism"simultaneously so that the FFR of both NTFM and LSFM/TSFM can be improved by shot peening.展开更多
The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour i...The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions展开更多
The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading f...The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D.展开更多
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the hi...The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.展开更多
Rolling Contact Fatigue(RCF) is a cumulative damage phenomenon when metals are subjected to repeated contact stresses. The fomation of pitting on the contact surface is the result of the rolling contact fatigue. The m...Rolling Contact Fatigue(RCF) is a cumulative damage phenomenon when metals are subjected to repeated contact stresses. The fomation of pitting on the contact surface is the result of the rolling contact fatigue. The morphologies of rolling contact fatigue fracture of the har- dened steels (86CrHoV7, 42CrMo) show that strong resemblance in fractuye mechanisms exists between rolling contact fatigue and uni-axial fatigue. Since fatigue striations are hardly observed in hardened steels under uni-axial fatigue, it is interesting to note that the state of stress in rolling contact fatigue is more favor- able to ductile fractures than in uni-axial fatigue.展开更多
Studies have been made of the torsional fatigue fracture life of notched specimens,the macroscopic fractography and microscopic fracture mechanism of steel 40Cr after various tempering treatments under different stres...Studies have been made of the torsional fatigue fracture life of notched specimens,the macroscopic fractography and microscopic fracture mechanism of steel 40Cr after various tempering treatments under different stresses,With the increase of stress,the fracture model changes from normal stress fracture to longitudinal shear one,and then transversal shear one. Under same stress,with the increase of strength,the fracture mode transfers from shear to normal stress fracture.The mechanism of normal stress fracture may be:transgranular frac- ture→striation+intergranular fracture→dimple+intergranular fracture,and of shear fracture may be:transgranular fracture→shear trace→dimple.Based on the experimental results,a fracture mechanism map of torsional fatigue has been drawn up.展开更多
The in-phase and out-of-phase thermal fatigue,the C-P type and P-C type isothermal fa- tigue of grey cast iron were experimentally studied.The fatigue life was evaluated analytically by using the elastic-plastic fract...The in-phase and out-of-phase thermal fatigue,the C-P type and P-C type isothermal fa- tigue of grey cast iron were experimentally studied.The fatigue life was evaluated analytically by using the elastic-plastic fracture mechanics method(mainly J integral).The results of ex- periments and calculations showed that the lifes of in-phase and C-P type fatigue are longer than that of out-of-phase and P-C type fatigue respectively within the same strain range. This is in contrast to the results of other materials such as low carbon steel.On the other hand, the predicted lifes are consistent with experimental results.This suggests that J integral as a mechanics parameter for characterizing the thermal fatigue strength of grey cast iron and the mechanics model and the calculation method developed here are efficient.A parameter ΔW_1 was proposed from energy aspect to characterize the capacity of crack propagation. The isothermal fatigue life is the same as the thermal fatigue life for identical ΔW_1 values.展开更多
The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zon...The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zone(NZ)and thermo-mechanical affected zone(TMAZ). Multiple crack sources are developed at the same time, and they merge into large cracks along the boundary line of NZ and TMAZ during the propagation stage. Furthermore, a mutual reinforcement coupling always exists between corrosion and cyclic loading during the initiation and propagation of corrosion fatigue crack. It is necessary to consider the effect of welding residual stress for understanding the mechanism of corrosion fatigue fracture of FSW joints.展开更多
In Situ observation of deformation and fracture for superalloy GH169 under combined fatigue-creep action is made by using high temperature metalloscope,it is shown that under the test conditions the deformution takes ...In Situ observation of deformation and fracture for superalloy GH169 under combined fatigue-creep action is made by using high temperature metalloscope,it is shown that under the test conditions the deformution takes place by merely of slipping,twinning and grain houndary sliding,and the mode of failure depends on the microstructure of specimen. lntergranular cracks arise.from W-type voids produced by the stress concentration at triple point which could not be relaxed by the interior deformation of grains and the local deformathm region along grain bounaries.And the crack propagation mechanism is the nucleation,growth and linkage of carities at the grain boundaries.Transgranular cracks form from deformatiom damages within the grain,and its propagation mechanism is shear rupture along the slip phme.展开更多
This laboratory was designated as Na-tional Laboratory in 1988 and is subordi-nate to the Institute of Metal Research(IMR),Academia Sinica.It is nowwell-equipped after rebuilding under a spe-cial grant-in-aid program ...This laboratory was designated as Na-tional Laboratory in 1988 and is subordi-nate to the Institute of Metal Research(IMR),Academia Sinica.It is nowwell-equipped after rebuilding under a spe-cial grant-in-aid program from the centralgovernment.According to the policy of“Opening,Flowing and Serving the WholeCountry”for the national laboratories,vis-iting research fellows at home and fromabroad are welcome to join common re-search projects in this lab.展开更多
This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fr...This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.展开更多
Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water...Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earth- quake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters (C and m) of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing.展开更多
Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-li...Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life.展开更多
The relative ratio of fatigue resistance to creep resistance of materials varies with test temper- ature.As the temperature decreases,the creep resistance,since it is a thermal activation pro- cess,becomes relatively ...The relative ratio of fatigue resistance to creep resistance of materials varies with test temper- ature.As the temperature decreases,the creep resistance,since it is a thermal activation pro- cess,becomes relatively larger than fatigue resistance.Therefore the fatigue damage becomes predominant,and results in expansion of fatigue fracture region(region F),and shrinkage even complete elimination of creep fracture region(region C).A materials parameter Ω can be defined to estimate the temperature at which the creep fracture region is completely de- pressed.This phenomenon could be understood on the basis of the integrated model of compet- itive and cumulative models of fatigue creep interaction.展开更多
The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning elect...The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning electron microscope and transmission electron microscope. The results show that thicker plate has lower strength and fracture toughness but higher fatigue crack growth resistance, by comparison to the thinner plate. The drop of strength is mainly attributed to grain coarsening in the thicker plate, and the increased degree of recrystallization results in the loss of Kio However, the coarsened grains in the thicker plate make cracks deflected and closure effect enhanced due to surface roughness increased. For both of plates, in the fracture surface subjected plain strain, a transition from transgranular dimpled fracture to intergranular dimpled fracture is observed during the fracture process.展开更多
文摘BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor for SFFFH.AIM To evaluate the intrinsic risk factors for SFFFH in young military recruits.METHODS X-ray and magnetic resonance imaging data were used for analysis.Acetabular anteversion of the superior acetabulum,acetabular anteversion of the center of the acetabulum(AVcen),anterior acetabular sector angle(AASA),posterior acetabular sector angle,superior acetabular sector angle,neck-shaft angle(NSA),inferior iliac angle(IIA),and ischiopubic angle were calculated.Then,logistic regression,receiver operating characteristic curve analysis,and independent samples t-test were performed to identify the risk factors for SFFFH.RESULTS Based on the results of logistic regression,age[odds ratio(OR):1.33;95%confidence interval(95%CI):1.12-1.65;P=0.0031]and treatment timing(OR:0.86;95%CI:0.75-0.96;P=0.015)could be considered as the indicators for SFFFH.AVcen(P=0.0334),AASA(P=0.0002),NSA(P=0.0007),and IIA(P=0.0316)were considered to have statistical significance.Further,AVcen(OR:1.41;95%CI:1.04-1.95)and AASA(OR:1.44;95%CI:1.21-1.77),especially AASA(area under curve:66.6%),should be paid much more attention due to the higher OR than other indicators.CONCLUSION We have for the first time unveiled that AASA and age could be key risk factors for SFFFH,which further verifies that deficient anterior coverage of the acetabulum might be the main cause of SFFFH.
文摘Predicting fatigue life of a given specimen using analytical methods can sometimes be challenging. An approach worth considering for this prediction involves employing fracture mechanics. Fracture mechanics can complement both laboratory experiments and finite element analysis (FEA) in estimating fatigue life of a given specimen, if relevant. In the case of aluminum light poles containing a welded hand-hole, the fatigue life has not yet been thoroughly predicted. The University of Akron has conducted a comprehensive fatigue study on aluminum light poles through various means, albeit without of predicting of said fatigue life of the specimens. AFGROW (Air Force Growth) can be used as a fracture mechanics software to predict fatigue life. ABAQUS was used (for FEA) in conjunction with the AFGROW analysis. The purpose of this study was to ultimately predict the life of the specimens tested in the lab and was achieved with various models including hollow tube and plate models. The plate model process was ultimately found to be the best method for this prediction, yielding results that mimicked the data from the laboratory. Further application for this form of fracture mechanics analysis is still yet to be determined, but for the sake of aluminum light poles, it is possible to predict the fatigue life and utilize said prediction in the field.
基金Project(2010CB731706) supported by the National Basic Research Program of China
文摘The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were further analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); phase analysis of these alloys was conducted with an X-ray diffraction (XRD). The results show that when Sn is included, growth of the recrystallization grains in the solution-treated A1-Zn-Mg-Cu-Zr alloy is obstructed, the precipitation-free zone (PFZ) of the overaged A1-Zn-Mg-Cu-Zr-Sn alloy becomes narrow, and the grain boundary precipitates are smaller. Consequently, the FCP resistance is higher. In addition, the overaged Sn-containing alloy has considerably higher tensile strength than the alloy without Sn.
基金supported by the Guangdong Province Science and Technology Commission (2008B080703019, 2011B080701010 and 2011B080701086)
文摘To investigate whether masticatory fatigue affects the fracture resistance and pattern of lower premolars restored with quartz-fiber post-core and full crown, 44 single rooted lower premolars recently extracted from orthodontic patients were divided into two groups of 22 each. The crowns of all teeth were removed and endodontically treated and then restored with quartz-fiber post-core and full crown. Twenty-two teeth in one group were selected randomly and circularly loaded at 45° to the long axis of the teeth of 127.4 N at a 6 Hz frequency, and the other group was not delivered to cyclic loading and considered as control. Subsequently, all teeth in two groups were continually loaded to fail at 45° to the long axis of the teeth at a crosshead speed of 1 mm.min-1. The mean destructive force values were (733.88±254.99) and (869.14±280.26) N for the experimental and the control group, respectively, and no statistically significant differences were found between two groups (P〉O.05). Bevel fracture and horizontal fracture in the neck of root were the major fracture mode of the specimens. Under the circumstances of this study, it seems that cyclic loading does not affect the fracture strength and pattern of the quartz-fiber post-core-crown complex.
基金the research core funding(No.P2-0063)the basic research project(No.J2-8186)from the Slovenian Research Agency.
文摘The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work.
文摘Before 1980s,the circular suspension spring in automobile subjected to torsion fatigue load,under the cyclic normal tensile stresses,the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM)and the fracture surface was under 45°diagonal.Because there exists the interaction between the residual stresses induced by shot peening and the applied cyclic normal tensile stresses in NTFM,which represents as"stress strengthening mechanism",shot peening technology could be used for improving the fatigue fracture resistance(FFR)of springs.However,since 1990s up to date,in addition to regular NTFM,the fatigue fractures occurred of peened springs from time to time are in longitudinal shear fracture mode(LSFM)or transverse shear fracture mode(TSFM)with the increase of applied cyclic shear stresses,which leads to a remarkable decrease of FFR.However,LSFM/TSFM can be avoided effectively by means of shot peening treatment again on the peened springs.The phenomena have been rarely happened before.At present there are few literatures concerning this problem.Based upon the results of force analysis of a spring,there is no interaction between the residual stresses by shot peening and the applied cyclic shear stresses in shear fracture.This;means that the effect of"stress strengthening mechanism"for improving the FFR of LSFM/TSFM is disappeared basically.During shot peening,however,both of residual stress and cyclic plastic deformed microstructure are induced synchronously like"twins"in the surface layer of a spring.It has been found for the first time by means of force analysis and experimental results that the modified microstructure in the"twins"as a"structure strengthening mechanism"can improve the FFR of LSFM/TSFM.At the same time,it is;also shown that the optimum technology of shot peening strengthening must have both"stress strengthening mechanism"and"structure strengthening mechanism"simultaneously so that the FFR of both NTFM and LSFM/TSFM can be improved by shot peening.
文摘The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions
基金supported by the Ministry of Education of China(No.208152)Gansu Natural Science Foundation(No.3ZS061-A52-47).
文摘The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D.
基金the National Key Basic Research and Development Program of China under grant No.2004CB619104.
文摘The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.
文摘Rolling Contact Fatigue(RCF) is a cumulative damage phenomenon when metals are subjected to repeated contact stresses. The fomation of pitting on the contact surface is the result of the rolling contact fatigue. The morphologies of rolling contact fatigue fracture of the har- dened steels (86CrHoV7, 42CrMo) show that strong resemblance in fractuye mechanisms exists between rolling contact fatigue and uni-axial fatigue. Since fatigue striations are hardly observed in hardened steels under uni-axial fatigue, it is interesting to note that the state of stress in rolling contact fatigue is more favor- able to ductile fractures than in uni-axial fatigue.
文摘Studies have been made of the torsional fatigue fracture life of notched specimens,the macroscopic fractography and microscopic fracture mechanism of steel 40Cr after various tempering treatments under different stresses,With the increase of stress,the fracture model changes from normal stress fracture to longitudinal shear one,and then transversal shear one. Under same stress,with the increase of strength,the fracture mode transfers from shear to normal stress fracture.The mechanism of normal stress fracture may be:transgranular frac- ture→striation+intergranular fracture→dimple+intergranular fracture,and of shear fracture may be:transgranular fracture→shear trace→dimple.Based on the experimental results,a fracture mechanism map of torsional fatigue has been drawn up.
文摘The in-phase and out-of-phase thermal fatigue,the C-P type and P-C type isothermal fa- tigue of grey cast iron were experimentally studied.The fatigue life was evaluated analytically by using the elastic-plastic fracture mechanics method(mainly J integral).The results of ex- periments and calculations showed that the lifes of in-phase and C-P type fatigue are longer than that of out-of-phase and P-C type fatigue respectively within the same strain range. This is in contrast to the results of other materials such as low carbon steel.On the other hand, the predicted lifes are consistent with experimental results.This suggests that J integral as a mechanics parameter for characterizing the thermal fatigue strength of grey cast iron and the mechanics model and the calculation method developed here are efficient.A parameter ΔW_1 was proposed from energy aspect to characterize the capacity of crack propagation. The isothermal fatigue life is the same as the thermal fatigue life for identical ΔW_1 values.
基金Project(KYGYJQZL2204) supported by the Basic Frontier Science and Technology Innovation Project of Army Engineering University of PLA,ChinaProjects(30110010403, 30110030103) supported by the Preliminary Research of Equipment,China。
文摘The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zone(NZ)and thermo-mechanical affected zone(TMAZ). Multiple crack sources are developed at the same time, and they merge into large cracks along the boundary line of NZ and TMAZ during the propagation stage. Furthermore, a mutual reinforcement coupling always exists between corrosion and cyclic loading during the initiation and propagation of corrosion fatigue crack. It is necessary to consider the effect of welding residual stress for understanding the mechanism of corrosion fatigue fracture of FSW joints.
文摘In Situ observation of deformation and fracture for superalloy GH169 under combined fatigue-creep action is made by using high temperature metalloscope,it is shown that under the test conditions the deformution takes place by merely of slipping,twinning and grain houndary sliding,and the mode of failure depends on the microstructure of specimen. lntergranular cracks arise.from W-type voids produced by the stress concentration at triple point which could not be relaxed by the interior deformation of grains and the local deformathm region along grain bounaries.And the crack propagation mechanism is the nucleation,growth and linkage of carities at the grain boundaries.Transgranular cracks form from deformatiom damages within the grain,and its propagation mechanism is shear rupture along the slip phme.
文摘This laboratory was designated as Na-tional Laboratory in 1988 and is subordi-nate to the Institute of Metal Research(IMR),Academia Sinica.It is nowwell-equipped after rebuilding under a spe-cial grant-in-aid program from the centralgovernment.According to the policy of“Opening,Flowing and Serving the WholeCountry”for the national laboratories,vis-iting research fellows at home and fromabroad are welcome to join common re-search projects in this lab.
文摘This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.
基金Project supported by the National Natural Science Foundation of China (No.50678182)the Chunhui International Fundation of China (No.Z2005155002)
文摘Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earth- quake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters (C and m) of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing.
基金Project was supported by the National Nature Science Foundation of China(51575408).
文摘Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life.
文摘The relative ratio of fatigue resistance to creep resistance of materials varies with test temper- ature.As the temperature decreases,the creep resistance,since it is a thermal activation pro- cess,becomes relatively larger than fatigue resistance.Therefore the fatigue damage becomes predominant,and results in expansion of fatigue fracture region(region F),and shrinkage even complete elimination of creep fracture region(region C).A materials parameter Ω can be defined to estimate the temperature at which the creep fracture region is completely de- pressed.This phenomenon could be understood on the basis of the integrated model of compet- itive and cumulative models of fatigue creep interaction.
基金Project(2012CB619503)supported by State Key Fundamental Research Program of China
文摘The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning electron microscope and transmission electron microscope. The results show that thicker plate has lower strength and fracture toughness but higher fatigue crack growth resistance, by comparison to the thinner plate. The drop of strength is mainly attributed to grain coarsening in the thicker plate, and the increased degree of recrystallization results in the loss of Kio However, the coarsened grains in the thicker plate make cracks deflected and closure effect enhanced due to surface roughness increased. For both of plates, in the fracture surface subjected plain strain, a transition from transgranular dimpled fracture to intergranular dimpled fracture is observed during the fracture process.