Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ...Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.展开更多
Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators.General approaches in naturally fractured reservoir simulation involve use of unstr...Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators.General approaches in naturally fractured reservoir simulation involve use of unstructured grids or a structured grid coupled with locally unstructured grids and discrete fracture models.These methods suffer from drawbacks such as lack of flexibility and of ease of updating.In this study,I combined fracture modeling by elastic gridding which improves flexibility,especially in complex reservoirs.The proposed model revises conventional modeling fractures by hard rigid planes that do not change through production.This is a dubious assumption,especially in reservoirs with a high production rate in the beginning.The proposed elastic fracture modeling considers changes in fracture properties,shape and aperture through the simulation.This strategy is only reliable for naturally fractured reservoirs with high fracture permeability and less permeable matrix and parallel fractures with less cross-connections.Comparison of elastic fracture modeling results with conventional modeling showed that these assumptions will cause production pressure to enlarge fracture apertures and change fracture shapes,which consequently results in lower production compared with what was previously assumed.It is concluded that an elastic gridded model could better simulate reservoir performance.展开更多
Simulation of fluid flow in the fractured porous media is very important and challenging.Researchers have developed some models for fractured porous media.With the development of related research in recent years,the p...Simulation of fluid flow in the fractured porous media is very important and challenging.Researchers have developed some models for fractured porous media.With the development of related research in recent years,the prospect of embedded discrete fracture model(EDFM)is more and more bright.However,since the size of the fractures in the actual reservoir varies greatly,a very fine grid should be used which leads to a huge burden to the computing resources.To address this challenge,in the present paper,an upscaling based model is proposed.In this model,the flow in large-scale fractures is directly described by the EDFM while that in the small-scale fractures is upscaled through local simulation by EDFM.The EDFM is used to simulate the large-and small-scale fractures independently two times,so the new model is called dual embedded discrete fracture model(D-EDFM).In this paper,the detailed implementation process of D-EDFM is introduced and,through test cases,it is found the proposed model is a feasible method to simulate the flow in fractured porous media.展开更多
The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid ...The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications,both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances; others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.展开更多
Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tu...Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.展开更多
Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity...Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity and reservoir heterogeneity,characterizing fluid flow with an appropriate reservoir model presents a challenging task that differs relatively from homogeneous conventional reservoirs in many aspects of view,including geological,petrophysical,production,and economics.In most fractured reservoirs,fracture networks create complex pathways that affect hydrocarbon flow,well performance,hence reservoir characterization.A better and comprehensive understanding of the available reservoir modeling approaches is much needed to accurately characterize fluid flow behavior in NFRs.Therefore,in this paper,a perspective review of the available modeling approaches was presented for fluid flow characterization in naturally fractured medium.Modeling methods were evaluated in terms of their description,application,advantages,and disadvantages.This study has also included the applications of these reservoir models in fluid flow characterizing studies and governing equations for fluid flow.Dual continuum models were proved to be better than single continuum models in the presence of large scale fractures.In comparison,discrete models were more appropriate for reservoirs that contain a smaller number of fractures.However,hybrid modeling was the best method to provide accurate and scalable fluid flow modeling.It is our understanding that this paper will bridge the gap between the fundamental understanding and application of NFRs modeling approaches and serve as a useful reference for engineers and researchers for present and future applications.展开更多
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne...Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.展开更多
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit...Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.展开更多
Evaluating the fracture resistance of rocks is essential for predicting and preventing catastrophic failure of cracked structures in rock engineering.This investigation developed a brittle fracture model to predict te...Evaluating the fracture resistance of rocks is essential for predicting and preventing catastrophic failure of cracked structures in rock engineering.This investigation developed a brittle fracture model to predict tensile mode(mode I)failure loads of cracked rocks.The basic principle of the model is to estimate the reference crack corresponding to the fracture process zone(FPZ)based on the maximum normal strain(MNSN)ahead of the crack tip,and then use the effective crack to calculate the fracture toughness.We emphasize that the non-singular stress/strain terms should be considered in the description of the MNSN.In this way,the FPZ,non-singular terms and the biaxial stress state at the crack tip are simul-taneously considered.The principle of the model is explicit and easy to apply.To verify the proposed model,laboratory experiments were performed on a rock material using six groups of specimens.The model predicted the specimen geometry dependence of the measured fracture toughness well.More-over,the potential of the model in analyzing the size effect of apparent fracture toughness was discussed and validated through experimental data reported in the literature.The model was demonstrated su-perior to some commonly used fracture models and is an excellent tool for the safety assessment of cracked rock structures.展开更多
Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ...Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.展开更多
The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur...The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.展开更多
Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilli...Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilling,hydraulic fracturing,and operational schedule is a challenging problem.An ensemble-based optimization method(EnOpt)is proposed here to optimize the design of the hydraulically fractured horizontal well in the shale gas reservoir.The objective is to maximize the net present value(NPV)which requires a simulation model to predict the cumulative shale gas production.To accurately describe the geometry of the hydraulic fractures,the embedded discrete fracture modeling method(EDFM)is used to construct the shale gas simulation model.The efects of gas absorption,Knudsen difusion,natural and hydraulic fractures,and gas-water two phase fow are considered in the shale gas production system.To improve the parameter continuity and Gaussianity required by the EnOpt method,the Hough transformation parameterization is used to characterize the horizontal well.The results show that the proposed method can efectively optimize the design parameters of the hydraulically fractured horizontal well,and the NPV can be improved greatly after optimization so that the design parameters can approach to their optimal values.展开更多
The relationship between hydrogen concentration and crack tip stress, strain field, hydrogen diffusion and internal pressure respectively in the crack tip process zone was investigated, and the length of the crack tip...The relationship between hydrogen concentration and crack tip stress, strain field, hydrogen diffusion and internal pressure respectively in the crack tip process zone was investigated, and the length of the crack tip process zone of hydrogen-induced cracking (HIC) was determined. Based on the mechanism of fracture of micro-crack nucleation, a dislocation model was presented for the fracture criteria of HIC. The influence factors of pipeline tube fracture ductile KISCC in the presence of hydrogen was analyzed, and the critical pressure bearing capability of a pipeline with hydrogeninduced cracking and the critical J-integrity (JISCC) were calculated, which is very important for pipeline safety.展开更多
Large coarse aggregates used in fully-graded hydraulic concrete necessitate large specimens for numerical modeling.This leads to a high computational cost for mesoscale modeling and thus slows the development of multi...Large coarse aggregates used in fully-graded hydraulic concrete necessitate large specimens for numerical modeling.This leads to a high computational cost for mesoscale modeling and thus slows the development of multiscale modeling of hydraulic mass concrete structures.To overcome this obstacle,an efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete was developed based on the concept of the governing mesostructure.The mesostructure was characterized by a critical aggregate size.Coarse aggregates smaller than the critical size were homogenized into mortar matrices.Key issues in mesostructure generation of fully-graded hydraulic concrete are discussed,as is the development of mesoscale finite element modeling methodology.The basic concept and implementation procedures of the proposed approach are also described in detail.The numerical results indicated that the proposed approach not only significantly improves the compu-tational efficiency of mesoscale modeling but also captures the dominant fracturing mechanism at the mesoscale and reproduces reasonable fracture properties at the macroscale.Therefore,the proposed approach can serve as a basis for multiscale fracture modeling of hydraulic mass concrete structures.展开更多
The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal co...The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.展开更多
The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichm...The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis.展开更多
The characteristics of the welding molten pool of AZ91 magnesium alloy were studied and the welding interface model was built using metallographic observation and scanning electorn microscope(SEM) composition analysis...The characteristics of the welding molten pool of AZ91 magnesium alloy were studied and the welding interface model was built using metallographic observation and scanning electorn microscope(SEM) composition analysis.The welding area was divided into heat affected zone(HAZ),liquefaction zone(LZ),rich poly zone(RPZ),sparse zone(SZ) and weld zone(WZ).The analyses of the microstructure and composition of each region show that optimizing the welding process can improve mechanical properties of weld zone.While for LZ,its tensile properties can be strengthened only by improving the composition of the parent metal and the second phase distribution.And the way to improve the tensile properties of LZ,RPZ,and SZ is to give priority to improve the parent metal composition and the second phase distribution,improving welding technology as the complementary method.Furthermore,based on the results above and the analyses of the microstructure and composition of welding cracks,it is found that the tensile fracture is mainly caused by the stress cracking rather than composition crack.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most ex...Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most existing numerical modeling tools,discontinuities are often simplified into planar surfaces.Discrete fracture network modeling tools such as MoFrac allow the simulation of non-planar discontinuities which can be incorporated into lattice-spring-based geomechanical software such as Slope Model for slope stability assessment.In this study,the slope failure of the south wall at Cadia Hill open pit mine is simulated using the lattice-spring-based synthetic rock mass(LS-SRM)modeling approach.First,the slope model is calibrated using field displacement monitoring data,and then the influence of different discontinuity configurations on the stability of the slope is investigated.The modeling results show that the slope with non-planar discontinuities is comparatively more stable than the ones with planar discontinuities.In addition,the slope becomes increasingly unstable with the increases of discontinuity intensity and size.At greater pit depth with higher in situ stress,both the slope models with planar and non-planar discontinuities experience localized failures due to very high stress concentrations,and the slope model with planar discontinuities is more deformable and less stable than that with non-planar discontinuities.展开更多
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-Major Project-Research on Tight Oil-Shale Oil Reservoir Engineering Methods and Key Technologies in Ordos Basin(No.ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015)。
文摘Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.
文摘Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators.General approaches in naturally fractured reservoir simulation involve use of unstructured grids or a structured grid coupled with locally unstructured grids and discrete fracture models.These methods suffer from drawbacks such as lack of flexibility and of ease of updating.In this study,I combined fracture modeling by elastic gridding which improves flexibility,especially in complex reservoirs.The proposed model revises conventional modeling fractures by hard rigid planes that do not change through production.This is a dubious assumption,especially in reservoirs with a high production rate in the beginning.The proposed elastic fracture modeling considers changes in fracture properties,shape and aperture through the simulation.This strategy is only reliable for naturally fractured reservoirs with high fracture permeability and less permeable matrix and parallel fractures with less cross-connections.Comparison of elastic fracture modeling results with conventional modeling showed that these assumptions will cause production pressure to enlarge fracture apertures and change fracture shapes,which consequently results in lower production compared with what was previously assumed.It is concluded that an elastic gridded model could better simulate reservoir performance.
基金supported by National Natural Science Foundations of China(Grant Nos.51706021,51936001 and 51804033)the Beijing Youth Talent Support Program(Grant No.CIT&TCD201804037)+1 种基金Joint Project of the Beijing Natural Science Foundation and the Beijing Municipal Education Commission(Grant No.KZ201810017023)the Great Wall Scholar program(Grant No.CIT&TCD20180313).
文摘Simulation of fluid flow in the fractured porous media is very important and challenging.Researchers have developed some models for fractured porous media.With the development of related research in recent years,the prospect of embedded discrete fracture model(EDFM)is more and more bright.However,since the size of the fractures in the actual reservoir varies greatly,a very fine grid should be used which leads to a huge burden to the computing resources.To address this challenge,in the present paper,an upscaling based model is proposed.In this model,the flow in large-scale fractures is directly described by the EDFM while that in the small-scale fractures is upscaled through local simulation by EDFM.The EDFM is used to simulate the large-and small-scale fractures independently two times,so the new model is called dual embedded discrete fracture model(D-EDFM).In this paper,the detailed implementation process of D-EDFM is introduced and,through test cases,it is found the proposed model is a feasible method to simulate the flow in fractured porous media.
基金supported by the National Nature Science Foundation of China(No.51278383,No.51238009 and No.51025827)Key Scientific and Technological Innovation Team of Zhejiang Province(No.2011R50020)Key Scientific and Technological Innovation Team of Wenzhou(No.C20120006)
文摘The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications,both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances; others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.
文摘Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.
文摘Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity and reservoir heterogeneity,characterizing fluid flow with an appropriate reservoir model presents a challenging task that differs relatively from homogeneous conventional reservoirs in many aspects of view,including geological,petrophysical,production,and economics.In most fractured reservoirs,fracture networks create complex pathways that affect hydrocarbon flow,well performance,hence reservoir characterization.A better and comprehensive understanding of the available reservoir modeling approaches is much needed to accurately characterize fluid flow behavior in NFRs.Therefore,in this paper,a perspective review of the available modeling approaches was presented for fluid flow characterization in naturally fractured medium.Modeling methods were evaluated in terms of their description,application,advantages,and disadvantages.This study has also included the applications of these reservoir models in fluid flow characterizing studies and governing equations for fluid flow.Dual continuum models were proved to be better than single continuum models in the presence of large scale fractures.In comparison,discrete models were more appropriate for reservoirs that contain a smaller number of fractures.However,hybrid modeling was the best method to provide accurate and scalable fluid flow modeling.It is our understanding that this paper will bridge the gap between the fundamental understanding and application of NFRs modeling approaches and serve as a useful reference for engineers and researchers for present and future applications.
基金sponsored by the General Program of the National Natural Science Foundation of China(Grant Nos.52079129 and 52209148)the Hubei Provincial General Fund,China(Grant No.2023AFB567)。
文摘Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.
基金supported by Open Fund (PLC201203) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)Major Project of Education Department in Sichuan Province (13ZA0177)
文摘Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.
基金he authors thank the financial support fromthe Key Program of National Natural Science Foundation of China(GrantNo.52039007)the Youth Science and Technology Innovation Research Team Fund of Sichuan Province(Grant No.2020JDTD0001).
文摘Evaluating the fracture resistance of rocks is essential for predicting and preventing catastrophic failure of cracked structures in rock engineering.This investigation developed a brittle fracture model to predict tensile mode(mode I)failure loads of cracked rocks.The basic principle of the model is to estimate the reference crack corresponding to the fracture process zone(FPZ)based on the maximum normal strain(MNSN)ahead of the crack tip,and then use the effective crack to calculate the fracture toughness.We emphasize that the non-singular stress/strain terms should be considered in the description of the MNSN.In this way,the FPZ,non-singular terms and the biaxial stress state at the crack tip are simul-taneously considered.The principle of the model is explicit and easy to apply.To verify the proposed model,laboratory experiments were performed on a rock material using six groups of specimens.The model predicted the specimen geometry dependence of the measured fracture toughness well.More-over,the potential of the model in analyzing the size effect of apparent fracture toughness was discussed and validated through experimental data reported in the literature.The model was demonstrated su-perior to some commonly used fracture models and is an excellent tool for the safety assessment of cracked rock structures.
文摘Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.
文摘The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.
基金This work is funded by the National Science and Technology Major Project of China(Grant Nos.2016ZX05037003-003 and 2017ZX05032004-002)PetroChina Innovation Foundation(Grant No.2020D-5007-0203)+2 种基金the National Natural Science Foundation of China(Grant No.51374222)the Sinopec fundamental perspective research project(Grant No.P18086-5)Joint Funds of the National Natural Science Foundation of China(U19B6003-02-05)supported by Science Foundation of China University of Petroleum,Beijing(Nos.2462018QZDX13 and 2462020YXZZ028).
文摘Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilling,hydraulic fracturing,and operational schedule is a challenging problem.An ensemble-based optimization method(EnOpt)is proposed here to optimize the design of the hydraulically fractured horizontal well in the shale gas reservoir.The objective is to maximize the net present value(NPV)which requires a simulation model to predict the cumulative shale gas production.To accurately describe the geometry of the hydraulic fractures,the embedded discrete fracture modeling method(EDFM)is used to construct the shale gas simulation model.The efects of gas absorption,Knudsen difusion,natural and hydraulic fractures,and gas-water two phase fow are considered in the shale gas production system.To improve the parameter continuity and Gaussianity required by the EnOpt method,the Hough transformation parameterization is used to characterize the horizontal well.The results show that the proposed method can efectively optimize the design parameters of the hydraulically fractured horizontal well,and the NPV can be improved greatly after optimization so that the design parameters can approach to their optimal values.
文摘The relationship between hydrogen concentration and crack tip stress, strain field, hydrogen diffusion and internal pressure respectively in the crack tip process zone was investigated, and the length of the crack tip process zone of hydrogen-induced cracking (HIC) was determined. Based on the mechanism of fracture of micro-crack nucleation, a dislocation model was presented for the fracture criteria of HIC. The influence factors of pipeline tube fracture ductile KISCC in the presence of hydrogen was analyzed, and the critical pressure bearing capability of a pipeline with hydrogeninduced cracking and the critical J-integrity (JISCC) were calculated, which is very important for pipeline safety.
基金the National Natural Science Foundation of China(Grants No.51979092,51739006,and U1765204).
文摘Large coarse aggregates used in fully-graded hydraulic concrete necessitate large specimens for numerical modeling.This leads to a high computational cost for mesoscale modeling and thus slows the development of multiscale modeling of hydraulic mass concrete structures.To overcome this obstacle,an efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete was developed based on the concept of the governing mesostructure.The mesostructure was characterized by a critical aggregate size.Coarse aggregates smaller than the critical size were homogenized into mortar matrices.Key issues in mesostructure generation of fully-graded hydraulic concrete are discussed,as is the development of mesoscale finite element modeling methodology.The basic concept and implementation procedures of the proposed approach are also described in detail.The numerical results indicated that the proposed approach not only significantly improves the compu-tational efficiency of mesoscale modeling but also captures the dominant fracturing mechanism at the mesoscale and reproduces reasonable fracture properties at the macroscale.Therefore,the proposed approach can serve as a basis for multiscale fracture modeling of hydraulic mass concrete structures.
基金supported by National Natural Science Foundation of China(No.51674279)China Postdoctoral Science Foundation(No.2016M602227)a grant from National Science and Technology Major Project(No.2017ZX05049-006)
文摘The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.
文摘The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis.
基金National Natural Science Foundation of China(No.51274092)Science Research of Hunan Provincial Department of Education,China(No.15C0710)
文摘The characteristics of the welding molten pool of AZ91 magnesium alloy were studied and the welding interface model was built using metallographic observation and scanning electorn microscope(SEM) composition analysis.The welding area was divided into heat affected zone(HAZ),liquefaction zone(LZ),rich poly zone(RPZ),sparse zone(SZ) and weld zone(WZ).The analyses of the microstructure and composition of each region show that optimizing the welding process can improve mechanical properties of weld zone.While for LZ,its tensile properties can be strengthened only by improving the composition of the parent metal and the second phase distribution.And the way to improve the tensile properties of LZ,RPZ,and SZ is to give priority to improve the parent metal composition and the second phase distribution,improving welding technology as the complementary method.Furthermore,based on the results above and the analyses of the microstructure and composition of welding cracks,it is found that the tensile fracture is mainly caused by the stress cracking rather than composition crack.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
基金Ontario Trillium Scholarship for supporting the doctorate program at Laurentian UniversityFinancial supports from the Natural Sciences and Engineering Research Council of Canada(NSERC CRD 470490-14)of Canada+1 种基金Nuclear Waste Management Organization(NWMO)Rio Tinto。
文摘Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most existing numerical modeling tools,discontinuities are often simplified into planar surfaces.Discrete fracture network modeling tools such as MoFrac allow the simulation of non-planar discontinuities which can be incorporated into lattice-spring-based geomechanical software such as Slope Model for slope stability assessment.In this study,the slope failure of the south wall at Cadia Hill open pit mine is simulated using the lattice-spring-based synthetic rock mass(LS-SRM)modeling approach.First,the slope model is calibrated using field displacement monitoring data,and then the influence of different discontinuity configurations on the stability of the slope is investigated.The modeling results show that the slope with non-planar discontinuities is comparatively more stable than the ones with planar discontinuities.In addition,the slope becomes increasingly unstable with the increases of discontinuity intensity and size.At greater pit depth with higher in situ stress,both the slope models with planar and non-planar discontinuities experience localized failures due to very high stress concentrations,and the slope model with planar discontinuities is more deformable and less stable than that with non-planar discontinuities.