The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments ne...The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.展开更多
This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of c...This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.展开更多
为研究靶板材料性能对爆炸成型弹丸(Explosively Formed Projectile,EFP)侵彻靶后破片特性的影响,开展EFP侵彻不同材料靶板(Q235钢、45号钢、装甲钢、2A12铝)后效破片特性试验,采用X光摄影方法观测靶后破片云形态及膨胀尺寸,通过布置多...为研究靶板材料性能对爆炸成型弹丸(Explosively Formed Projectile,EFP)侵彻靶后破片特性的影响,开展EFP侵彻不同材料靶板(Q235钢、45号钢、装甲钢、2A12铝)后效破片特性试验,采用X光摄影方法观测靶后破片云形态及膨胀尺寸,通过布置多层纤维板获得破片散布特性,并对靶后破片进行回收。研究结果表明:在靶板密度一定的情况下,靶板强度主要影响破片云轴向膨胀能力,对径向膨胀能力影响很小;靶后破片环形毁伤区的飞散角位于20°~25°范围内差别不大,但是靶板背面出口崩落会造成靶后破片飞散角出现极大值,随着钢靶强度的增大,靶后破片径向散布增强,破片总数减小,但是大质量段钢破片数量增多;不同强度钢靶产生的钢破片平均尺寸满足Kipp等提出的基于材料流动应力的碎片尺寸模型。展开更多
The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragment...The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole,varying initiation practice in blast design and its effect on explosive energy release characteristic.This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India.The mines use draglines and shoveledumper combination for removal of overburden.Despite its pivotal role in controlling the overall economics of a mining operation,the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance.Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance.Ninety one blasts were conducted with varying blast designs and charging patterns,and their impacts on the rock fragmentation were documented.A high-speed camera was deployed to record the detonation sequences of the blasts.The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.展开更多
作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladde...作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladden柱体动力屈曲失稳模型,提出了一种预测岩石平均破碎块度的方法,并探究了应变率对动态强度和平均破碎块度的影响。研究结果表明,随着应变率的增加,动态强度增加,平均破碎块度减小,且应变率依赖性逐渐降低。模型平均破碎块度预测与实验数据吻合良好。展开更多
The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage i...The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed.展开更多
Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement pro...Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.展开更多
Pyramid cut blasting is an essential form of inclined hole cut blasting,but the in-situ stress effect of pyramid cut blasting is rarely studied.Based on the research background of pyramid cut blasting in a deep rock m...Pyramid cut blasting is an essential form of inclined hole cut blasting,but the in-situ stress effect of pyramid cut blasting is rarely studied.Based on the research background of pyramid cut blasting in a deep rock mass,the size,volume,and fragment size distribution of the blasting cavity before and after uniaxial compression were analysed by a model test.Otherwise,the damage and effective stress of the pyramid cut blasting were analysed with LS-DYNA numerical simulation.The results show that the damage and fragmentation of pyramid cut blasting are not only affected by blasting stress wave and blasting gas,but also affected by uniaxial compression.Under the influence of uniaxial compression,the blasting stress wave and blasting gas are more likely to damage the rock mass parallel to the uniaxial compression direction near the connecting line of blasting hole,and make the volume of cavity larger and the fragment rate lower.Additionally,uniaxial compression has a prominent influence during the middle and late stages of blasting.展开更多
The hazard caused by the fragments of damaged structures is usually significant in acci-dental explosions or hostile blast events.A reliable and efficient method to estimate probable fragment size,velocity and launch ...The hazard caused by the fragments of damaged structures is usually significant in acci-dental explosions or hostile blast events.A reliable and efficient method to estimate probable fragment size,velocity and launch distance will be useful to assess and design countermeasures to mitigate the possible fragment hazards.This paper presents a numerical method for predicting the size and launch distance of the fragments caused by explosive damage of masonry wall.Numerical simulations with different scaled distances are carried out,and the statistical distribution functions of the fragment size and launch distance in terms of the scaled distance are derived.展开更多
The paper reviews the development of prediction formulas for the fragmentation from bench blasting.Much attention has been paid to the Kuz-Ram model,its development and errors,and the mean vs.median misunderstanding.T...The paper reviews the development of prediction formulas for the fragmentation from bench blasting.Much attention has been paid to the Kuz-Ram model,its development and errors,and the mean vs.median misunderstanding.The work by the US Bureau of Mines(USBM)and Chung and Katsabanis are also reviewed,as well as the two Julius Kruttschnitt Mineral Research Centre(JKMRC)models,i.e.the crush zone model(CZM)and the two-component model(TCM),which were developed to cope with the underestimation of blasting fines.The change brought by the Swebrec distribution and the associated Kuznetsov-Cunningham-Ouchterlony(KCO)model is described.Studying distribution-free fragment sizes xP for an arbitrary mass passing P led to the discovery of the fragmentation-energy fan,and with the help of dimensional analysis,to the new fragmentation prediction model xP-frag,which has much lower errors than those of the Kuz-Ram and CZM models.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42177164)the Innovation-Driven Project of Central South University(Grant No.2020CX040)supported by China Scholarship Council(Grant No.202006370006)。
文摘The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.
文摘This report provides an overall assessment of land fragmentation problems in East Africa. Many parts of East Africa have become highly fragmented, putting development systems and activities in these areas at risk of complete collapse. Land fragmentation occurs when land gets converted for agriculture, industrialization, or urbanization, invaded by non-local plants, or enclosed for individual use and by subdividing farmlands into subsequent smaller units called parcels with varying average farm sizes. Fragmentation results from inappropriate agricultural development processes and ineffective land use planning that fails to recognize how farmland is used, and the importance of its interconnected areas. Insecurity of tenure and resource rights are key factors in making this possible. Land fragmentation is one of the key reasons why the ability of most resources in East Africa becomes scarcer, and those remaining become “privatized” by more powerful community members—keen to maintain their access to them. Such individualistic attitudes are new and disadvantage the poorest even further by affecting the traditional customary safety nets and agricultural outputs. Neither the government nor customary governance systems effectively protect resource access for the poorest. This review summary report identifies the key causes, measures, and implications, government interventions, and the common remedies to land fragmentation problems in the East African Countries of Kenya, Uganda, Rwanda, and Tanzania including neighboring Ethiopia, and the Sudan. The findings indicated from 2005 to 2015, the population kept increasing for all the named countries in East Africa with Rwanda and Uganda having a substantial increase in population density. The study review further explores the trend in the performance of agriculture by average farm sizes within the intervals of five years by highlighting their strong linkages and found that the average farm size has declined drastically, especially for Kenya. This can only mean that small farms kept becoming smaller and smaller and that there were more small-scale farmers. The results further depicted that the major and commonly cultivated food crops among the East African countries include maize, sorghum, rice, cassava, sweet potatoes, bananas, Irish potatoes, beans, peas, etc., with maize yields (Mt/ha) in 2003 for Uganda being the highest (1.79 Mt/ha) and the lowest in Rwanda (0.77 Mt/ha) respectively. Therefore, from the review results, recommendations are being made as to how the negative impacts of land fragmentation on agricultural productivity can be reduced or mitigated. One way is by community sensitization and awareness about the importance of land consolidation and its proposition on farm productivity.
文摘为研究靶板材料性能对爆炸成型弹丸(Explosively Formed Projectile,EFP)侵彻靶后破片特性的影响,开展EFP侵彻不同材料靶板(Q235钢、45号钢、装甲钢、2A12铝)后效破片特性试验,采用X光摄影方法观测靶后破片云形态及膨胀尺寸,通过布置多层纤维板获得破片散布特性,并对靶后破片进行回收。研究结果表明:在靶板密度一定的情况下,靶板强度主要影响破片云轴向膨胀能力,对径向膨胀能力影响很小;靶后破片环形毁伤区的飞散角位于20°~25°范围内差别不大,但是靶板背面出口崩落会造成靶后破片飞散角出现极大值,随着钢靶强度的增大,靶后破片径向散布增强,破片总数减小,但是大质量段钢破片数量增多;不同强度钢靶产生的钢破片平均尺寸满足Kipp等提出的基于材料流动应力的碎片尺寸模型。
基金The financial support from Coal S&T grant of Ministry of Coal,Government of India
文摘The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole,varying initiation practice in blast design and its effect on explosive energy release characteristic.This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India.The mines use draglines and shoveledumper combination for removal of overburden.Despite its pivotal role in controlling the overall economics of a mining operation,the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance.Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance.Ninety one blasts were conducted with varying blast designs and charging patterns,and their impacts on the rock fragmentation were documented.A high-speed camera was deployed to record the detonation sequences of the blasts.The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.
文摘作为表征动力破碎的重要参数之一,平均破碎块度的研究对于揭示岩石破碎机理具有重要意义。尽管进行了大量理论与实验研究,但是还缺乏从裂纹动力学角度来澄清岩石破碎和块度形成机理。基于动态荷载作用下翼型裂纹扩展模型和J. R. Gladden柱体动力屈曲失稳模型,提出了一种预测岩石平均破碎块度的方法,并探究了应变率对动态强度和平均破碎块度的影响。研究结果表明,随着应变率的增加,动态强度增加,平均破碎块度减小,且应变率依赖性逐渐降低。模型平均破碎块度预测与实验数据吻合良好。
基金This research was supported by the National Natural Science Foundation of China(Nos.51704211 and 51879184).
文摘The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed.
基金supported by the National Natural Science Foundation of China (41472272, 41225011)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2013K015)
文摘Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.
基金supported by the National Natural Science Foundation of China(Grant No.51974316)the National Key R&D Program of China(Grant No.2021YFB3401500)the National Key Research and Development Program of China(Grant No.2016YFC0600903)。
文摘Pyramid cut blasting is an essential form of inclined hole cut blasting,but the in-situ stress effect of pyramid cut blasting is rarely studied.Based on the research background of pyramid cut blasting in a deep rock mass,the size,volume,and fragment size distribution of the blasting cavity before and after uniaxial compression were analysed by a model test.Otherwise,the damage and effective stress of the pyramid cut blasting were analysed with LS-DYNA numerical simulation.The results show that the damage and fragmentation of pyramid cut blasting are not only affected by blasting stress wave and blasting gas,but also affected by uniaxial compression.Under the influence of uniaxial compression,the blasting stress wave and blasting gas are more likely to damage the rock mass parallel to the uniaxial compression direction near the connecting line of blasting hole,and make the volume of cavity larger and the fragment rate lower.Additionally,uniaxial compression has a prominent influence during the middle and late stages of blasting.
基金Supported by the Australian Research Council (ARC,No.DP0774061)National Natural Science Foundation of China (No.50638030 and 50528808).
文摘The hazard caused by the fragments of damaged structures is usually significant in acci-dental explosions or hostile blast events.A reliable and efficient method to estimate probable fragment size,velocity and launch distance will be useful to assess and design countermeasures to mitigate the possible fragment hazards.This paper presents a numerical method for predicting the size and launch distance of the fragments caused by explosive damage of masonry wall.Numerical simulations with different scaled distances are carried out,and the statistical distribution functions of the fragment size and launch distance in terms of the scaled distance are derived.
基金provided by MULUniversidad Politecnica de Madrid
文摘The paper reviews the development of prediction formulas for the fragmentation from bench blasting.Much attention has been paid to the Kuz-Ram model,its development and errors,and the mean vs.median misunderstanding.The work by the US Bureau of Mines(USBM)and Chung and Katsabanis are also reviewed,as well as the two Julius Kruttschnitt Mineral Research Centre(JKMRC)models,i.e.the crush zone model(CZM)and the two-component model(TCM),which were developed to cope with the underestimation of blasting fines.The change brought by the Swebrec distribution and the associated Kuznetsov-Cunningham-Ouchterlony(KCO)model is described.Studying distribution-free fragment sizes xP for an arbitrary mass passing P led to the discovery of the fragmentation-energy fan,and with the help of dimensional analysis,to the new fragmentation prediction model xP-frag,which has much lower errors than those of the Kuz-Ram and CZM models.