期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Experimental and Numerical Study on Progressive Collapse Analysis of a Glulam Frame Structure:I.Side Column Exposed to Fire
1
作者 Xiaowu Cheng Xinyan Tao Lu Wang 《Journal of Renewable Materials》 SCIE EI 2023年第2期905-920,共16页
This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fi... This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fire is identified.The experimental results show that the progressive collapse of a glulam frame could be described for three stages,namely bending effect stage,catenary effect stage and failure stage,respectively.These stages are discussed in detail to understand the structural behavior before and during collapse.It is demonstrated that the entire frame slopes towards the side of the heated column,and the“overturning”collapse occurs eventually.The catenary effect of beams is the main reason for the progressive collapse of the frame.In addition,a finite element model of a glulam frame is established to simulate the progressive collapse behavior.The effects of axial loads on the columns are summarized.The numerical simulation results agree well with the experimental results,which could verify the effectiveness and practicability of finite element simulation.Furthermore,the progressive collapse resistance of the frame in practical design were proposed. 展开更多
关键词 COLLAPSE glulam frame structure FIRE failure mechanisms
下载PDF
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
2
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 Assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Discussion on Construction Technology and Welding Deformation of High-Rise Steel Frame Structure
3
作者 Sijin He Xinzhong Leng 《Journal of World Architecture》 2023年第5期23-28,共6页
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu... Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry. 展开更多
关键词 High-rise steel frame structure Construction technology Welding deformation Structural stability
下载PDF
Estimation of Aleatory Randomness by S_(a)(T_(1))-Based Intensity Measures in Fragility Analysis of Reinforced Concrete Frame Structures
4
作者 Yantai Zhang Yongan Shi +1 位作者 Baoyin Sun ZhengWang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期73-96,共24页
Based on the multiple stripes analysis method,an investigation of the estimation of aleatory randomness by S_(a)(T_(1))-based intensity measures(IMs)in the fragility analysis is carried out for two typical low-and med... Based on the multiple stripes analysis method,an investigation of the estimation of aleatory randomness by S_(a)(T_(1))-based intensity measures(IMs)in the fragility analysis is carried out for two typical low-and mediumrise reinforced concrete(RC)frame structures with 4 and 8 stories,respectively.The sensitivity of the aleatory randomness estimated in fragility curves to various S_(a)(T_(1))-based IMs is analyzed at three damage limit states,i.e.,immediate occupancy,life safety,and collapse prevention.In addition,the effect of characterization methods of bidirectional ground motion intensity on the record-to-record variability is investigated.It is found that the damage limit state of the structure has an important influence on the applicability of the ground motion IM.The S_(a)(T_(1))-based IMs,considering the effect of softened period,can maintain lower record-to-record variability in the three limit states,and the S_(a)(T_(1))-based IMs,considering the effect of higher modes,do not show their advantage over S_(a)(T_(1)).Furthermore,the optimal multiplier C and exponentαin the dual-parameter ground motion IM are proposed to obtain a lower record-to-record variability in the fragility analysis of different damage limit state.Finally,the improved dual-parameter ground motion IM is applied in the risk assessment of the 8-story frame structure. 展开更多
关键词 RC frame structure intensity measure fragility analysis record-to-record variability softened period risk assessment
下载PDF
Selection and modification of ground motion records using Newmark-Hall spectrum as target spectrum for long-period structures
5
作者 Fu Jianyu Wang Dongsheng +1 位作者 Zhang Rui Chen Xiaoyu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期117-134,共18页
Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses accordin... Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations. 展开更多
关键词 time-history analysis selection and modification of ground motions target spectrum Newmark-Hall spectrum steel moment resisting frame structure
下载PDF
Research on stretching flame correction technology of aluminum alloy ship frame skin welding structure 被引量:2
6
作者 袁银辉 聂黎军 +2 位作者 路浩 余洋 闫德俊 《China Welding》 CAS 2022年第2期15-22,共8页
At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is lar... At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is large.It is difficult to control and eliminate the local convex deformation after welding.In order to improve the conventional orthopedic technology and improve the orthopedic efficiency,the pre-elastic deformation technology is proposed.Using the method of combining numerical simulation and experiment,the orthopedic effect of conventional and pre-elastic orthopedic technology is studied,and the influence of pre-deformation variables and heating path on deformation control of the frame skin structure after welding is simulated.The simulation results show that the technical key to the control of convex deformation lies in the control of the pre-elastic deformation and the setting of the heating route.The experimental verification results show that the pre-elastic deformation technology has a better control effect than conventional orthopedics,can significantly improve the orthopedic efficiency,and provides a new method for deformation control in the shipbuilding industry. 展开更多
关键词 prestress-flame correction process frame skin structure aluminum alloy numerical simulation
下载PDF
A New Non-uniform Beam Element and Its Application to Buckling Analysis for Framed Structures
7
作者 陆念力 王佳 《Journal of Donghua University(English Edition)》 EI CAS 2012年第2期111-114,共4页
The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the no... The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the non-linear analysis and the static condensation. Based on the interpolation theory, the displacement fields of the three-node non-uniform Euler-Bernoulli beam element were constructed at first: the quintic Hermite interpolation polynomial was used for the lateral displacement field and the quadratic Lagrange interpolation polynomial for the axial displacement field. Then,based on the basic assumptions of non-uniform Euler-Bernoulli beam whose section properties were continuously varying along its centroidal axis, the linear and geometric stiffness matrices of the three-node non-uniform beam element were derived according to the nonlinear finite element theory. Finally,the degrees of freedom ( DOFs) of the middle node of the element were eliminated using the static condensation method, and a new two-node non-uniform beam element including axial-force effect was obtained. The results indicate that each bar needs to be meshed with only one element could get a fairly accurate solution when it is applied to the stability analyses. 展开更多
关键词 non-uniform beam element finite element method structural buckling framed structures static condensation
下载PDF
Influence of the column-to-beam flexural strength ratio on the failure mode of beam-column connections in RC frames
8
作者 Gong Maosheng Zuo Zhanxuan +2 位作者 Sun Jing He Riteng Zhao Yinan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期441-452,共12页
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ... The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes. 展开更多
关键词 strong column-weak beam column-to-beam flexural strength ratio reinforced concrete frame structure beam-column connection failure mode
下载PDF
Research on Seismic Design of High-Rise Buildings Based on Framed-Shear Structural System
9
作者 Wei Wang 《Frontiers Research of Architecture and Engineering》 2020年第3期87-90,共4页
Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is... Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is necessary to diversify the functions of high-rise buildings and complicate the building form.At present,the main structural systems of high-rise buildings are:frame structure,shear wall structure,frame shear structure,and tube structure.Different structural systems determine the size of the load-bearing capacity,lateral stiffness,and seismic performance,as well as the amount of material used and the cost.This project is mainly concerned with the seismic design of frame shear structural systems,which are widely used today. 展开更多
关键词 frame shear wall structure Displacement-based seismic design Shear deformation
下载PDF
Slotted Hole Effect on Damage Mechanism of Gymnasium Building with RC Frame and Steel Roof
10
作者 Atsushi Suzuki Tomomi Fujita Yoshihiro Kimura 《Open Journal of Civil Engineering》 2020年第2期162-174,共13页
On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major fai... On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span> 展开更多
关键词 RC frame with Steel Roof structure The 2011 off the Pacific Coast of Tohoku Earthquake Damage Mechanism Pushover Analysis Seismic Response Analysis
下载PDF
Development of an Adjustable Bed for a Micro-Turbine Electric Power Generator Plant
11
作者 Aina Rasheed Buliaminu Kareem 《Journal of Power and Energy Engineering》 2022年第5期65-76,共12页
An adjustable bed is a supporting structure designed to provide a seating base or platform, for a 5.0 KW micro steam turbine generator plant prior to its mounting on a block-type concrete foundation. The design of the... An adjustable bed is a supporting structure designed to provide a seating base or platform, for a 5.0 KW micro steam turbine generator plant prior to its mounting on a block-type concrete foundation. The design of the bed frame and flanges was carried out by considering the predetermined weights of the turbine and generator (alternator) [1]. On this basis, steel materials of U-channels and angle irons were used in the fabrication of the generator bed. The bed was designed to be adjustable by accommodating direct coupling of the turbine with the generator, and the belt drive. Fabrication was carried out by welding, machining, and assembly. During assembly, the bed was made to accommodate damping materials in order to reduce the vibration of the plant [2]. The performance of the unit with or without vibration isolator when they are axially connected with flexible flange coupling or transversely connected with sets of belt and pulley, in succession respectively. The results showed that a reduction in the force transmitted to the supporting structure occurred when the vibration produced by the unit is isolated from its base by the use of a vibration isolator, maximum reduction of 99.95% achieved when axially coupled and 99.91% when transversely connected with belt and pulley system [3]. 展开更多
关键词 Coupling Dynamic Load Forces Transmission PULLEY Static Load Steel frame structure Vibration Isolator
下载PDF
Investigation of dynamics of discrete framed structures by a numerical wave-based method and an analytical homogenization approach
12
作者 Zhou Changwei Sun Xiangkun +4 位作者 Mohamed Ichchou Abdel-Malek Zine Jean-Pierre Lainé Stephane Hans Claude Boutin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期66-74,共9页
In this article, the analytical homogenization method of periodic discrete media(HPDM)and the numerical condensed wave finite element method(CWFEM) are employed to study the longitudinal and transverse vibrations of f... In this article, the analytical homogenization method of periodic discrete media(HPDM)and the numerical condensed wave finite element method(CWFEM) are employed to study the longitudinal and transverse vibrations of framed structures. The valid frequency range of the HPDM is re-evaluated using the wave propagation feature identified by the CWFEM. The relative error of the wavenumber by the HPDM compared to that by the CWFEM is illustrated in functions of frequency and scale ratio. A parametric study on the thickness of the structure is carried out where the dispersion relation and the relative error are given for three different thicknesses. The dynamics of a finite structure such as natural frequency and forced response are also investigated using the HPDM and the CWFEM. 展开更多
关键词 framed structures Homogenization method Periodic structures Wave finite element method Wave propagation
原文传递
Construction of CoNi_(2)S_(4) nanocubes interlinked by few-layer Ti_(3)C_(2)T_(x) MXene with high performance for asymmetric supercapacitors
13
作者 Ji-Qiu Qi Meng-Yuan Huang +5 位作者 Chen-Ya Ruan Dong-Dong Zhu Lei Zhu Fu-Xiang Wei Yan-Wei Sui Qing-Kun Meng 《Rare Metals》 SCIE EI CAS CSCD 2022年第12期4116-4126,共11页
Both MXene and zeolitic imidazolate framework(ZIF)derivatives are tend to agglomerate during the compound process,which adversely affects their electrochemical properties.To alleviate this phenomenon,fewlayer MXene wa... Both MXene and zeolitic imidazolate framework(ZIF)derivatives are tend to agglomerate during the compound process,which adversely affects their electrochemical properties.To alleviate this phenomenon,fewlayer MXene was stripped by mechanical method,and electrostatic self-assembly with ZIF-67 in the presence of cationic surfactants.Furthermore,CoNi_(2)S_(4)/MXene composite was synthesized by the facile hydrothermal reaction.CoNi_(2)S_(4)well retained the cube frame structure of the ZIF-67 with the sagging outer frame and rough surface.In the composite,CoNi_(2)S_(4)nanocubes were interlinked by MXene nanosheets,which can effectively improve the structural stability and make full use of the active surface.CoNi_(2)S_(4)/MXene composite electrode exhibits an outperforming specific capacitance(751 C·g^(-1)at 1 A·g^(-1)),far higher than that of pure CoNi2S4(600 C·g^(-1)at 1 A·g^(-1)).An asymmetric supercapacitor(CoNi_(2)S_(4)/MXene//reduced graphene oxide(RGO))assembling delivers high energy density of 33.8 Wh·kg^(-1)and excellent cycling performance.This study indicates the potential of MXene/ZIF derivatives in the application of supercapacitor. 展开更多
关键词 Cubic frame structure Few-layer MXene ZIF-67 Asymmetric supercapacitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部