A novel technique called physical frame time-slot switching (PFTS) is discussed and its technical and application aspects are analyzed. The format of the ethernet media access control (MAC) frame is borrowed in de...A novel technique called physical frame time-slot switching (PFTS) is discussed and its technical and application aspects are analyzed. The format of the ethernet media access control (MAC) frame is borrowed in defining the physical frame for PFTS and the transmission time for the maximum size of the MAC frame is defined as a physical frame time-slot (PFT). Consequently, user data can be fed into PFTS and switched in a single layer sub-network in an asynchronous mode.展开更多
We review the research and development of beyond Pb/s capacity space-division-multiplexed transmission technology using multi-core optical fibers for satisfying the ever-increasing traffic demand. Moreover, we present...We review the research and development of beyond Pb/s capacity space-division-multiplexed transmission technology using multi-core optical fibers for satisfying the ever-increasing traffic demand. Moreover, we present an optical packet and circuit integrated network technology to improve switching capacity and flexibility in network nodes for the rapid traffic fluctuation and the data service diversification.展开更多
基金Supported by National Natural Science Foundation of China (No. 60372065)
文摘A novel technique called physical frame time-slot switching (PFTS) is discussed and its technical and application aspects are analyzed. The format of the ethernet media access control (MAC) frame is borrowed in defining the physical frame for PFTS and the transmission time for the maximum size of the MAC frame is defined as a physical frame time-slot (PFT). Consequently, user data can be fed into PFTS and switched in a single layer sub-network in an asynchronous mode.
文摘We review the research and development of beyond Pb/s capacity space-division-multiplexed transmission technology using multi-core optical fibers for satisfying the ever-increasing traffic demand. Moreover, we present an optical packet and circuit integrated network technology to improve switching capacity and flexibility in network nodes for the rapid traffic fluctuation and the data service diversification.