A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef...A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.展开更多
Scalar-tensor theories of gravity are considered to be competitors to Einstein's theory of general relativity for the description of classical gravity,as they are used to build feasible models for cosmic inflation...Scalar-tensor theories of gravity are considered to be competitors to Einstein's theory of general relativity for the description of classical gravity,as they are used to build feasible models for cosmic inflation.These theories can be formulated both in the Jordan and Einstein frame,which are related by a Weyl transformation with a field transformation,known together as a frame transformation.These theories formulated in the above two frames are often considered to be equivalent from the point of view of classical theory.However,this is no longer true from the quantum field theoretical perspective.In the present article,we show that the Ward identities derived in the above two frames are not connected through the frame transformation.This shows that the quantum field theories formulated in these two frames are not equivalent to each other.Moreover,this inequivalence is also shown by comparing the effective actions derived in these two frames.展开更多
In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the...In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.展开更多
<div style="text-align:justify;"> Digital watermarking technology plays a powerful role in the effective protection of digital media copyright, image authentication, image sharing, image information tr...<div style="text-align:justify;"> Digital watermarking technology plays a powerful role in the effective protection of digital media copyright, image authentication, image sharing, image information transmission and other fields. Driven by strong demand, digital image watermarking technology has aroused widespread research interest and has gradually developed into one of the most active research directions in information science. In this paper, we present a novel robust digital watermarking algorithm based on discrete radon transform tight frame in finite-set (FDRT). FDRT of the zero mean image is a tight frame, the frame boundary <em><strong>A</strong></em> = <em><strong>B</strong></em> = 1, the dual of the frame is itself. The decomposition and reconstruction of the FDRT tight frame will not cause the phenomenon of image distortion. The embedding of hidden watermark is to add a weak signal to the strong background of the original image. Watermark extraction is to effectively identify the embedded weak signal. The feasibility of the watermarking algorithm is analyzed from two aspects of information hiding and robustness. We select the independent Gaussian random vector as the watermark series, and the peak signal-to-noise ratio (PSNR) as the visual degradation criterion of the watermark image. Basing the FDRT compact stand dual operator, we derived the relationship among the strength parameter, square sum of watermark series, the PSNR. Using Checkmark system, the simulation results show that the algorithm is robust enough to some very important image processing attacks such as lossy compression, MAP, filtering, segmentation, edge enhancement, jitter, quadratic modulation and general geometric attack (scaling, rotation, shearing), etc. </div>展开更多
The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the t...The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the twin robots cannot reach the same point to complete the process of workpiece frame positioning. Thus, a new method is proposed to solve the problem of coincidence between workpiece frames. Transformation between two robot base frames is initiated by measuring the coordinate values of three non-collinear calibration points. The relationship between the workpiece frame and that of the slave robot base frame is then determined according to the known transformation of two robot base frames, as well as the relationship between the workpiece frame and that of the master robot base frame. Only one robot is required to actually measure the coordinate values of the calibration points on the workpiece. This requirement is beneficial when one of the robots cannot reach and measure the calibration points. The coordinate values of the calibration points are derived by driving the robot hand to the points and recording the values of top center point(TCP) coordinates. The translation and rotation matrices relate either the two robot base frames or the workpiece and master robot. The coordinated are solved using the measured values of the calibration points according to the Cartesian transformation principle. An optimal method is developed based on exponential mapping of Lie algebra to ensure that the rotation matrix is orthogonal. Experimental results show that this method involves fewer steps, offers significant advantages in terms of operation and time-saving. A method used to synchronize workpiece frames in twin-robot system automatically is presented.展开更多
Wavelet frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of science and engineering. Finding general and verifiable ...Wavelet frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of science and engineering. Finding general and verifiable conditions which imply that the wavelet systems are wavelet frames is among the core problems in time-frequency analysis. In this article, we establish some new inequalities for wavelet frames on local fields of positive characteristic by means of the Fourier transform. As an application, an improved version of the Li-Jiang inequality for wavelet frames on local fields is obtained.展开更多
In this article, we introduce a notion of nonuniform wavelet frames on local fields of positive characteristic. Furthermore, we gave a complete characterization of tight nonuniform wavelet frames on local fields of po...In this article, we introduce a notion of nonuniform wavelet frames on local fields of positive characteristic. Furthermore, we gave a complete characterization of tight nonuniform wavelet frames on local fields of positive characteristic via Fourier transform. Our results also hold for the Cantor dyadic group and the Vilenkin groups as they are local fields of positive characteristic.展开更多
It is commonly thought that the Michelson-Morley experiment from 1887 and Kennedy-Thorndike experiment from 1932 demonstrated that the universal frame of reference (ether) does not exist and that the velocity of light...It is commonly thought that the Michelson-Morley experiment from 1887 and Kennedy-Thorndike experiment from 1932 demonstrated that the universal frame of reference (ether) does not exist and that the velocity of light in vacuum is absolutely constant. The analysis of this experiment led to the creation of the Special Theory of Relativity (STR). The article explains why Michelson-Morley and Kennedy-Thorndike experiments could not detect the universal frame of reference. In this article, a different transformation of time and position than the Lorentz transformation is derived on the basis of the geometric analysis of the Michelson-Morley and Kennedy-Thorndike experiments. The transformation is derived based on the assumption that the universal frame of reference (UFR) exists. UFR is a frame of reference in which the velocity of light is constant in every direction. In inertial frames of reference moving in the UFR, the velocity of light may be different. The article has derived the formula for relative speed and patterns for the maximum and minimum speed of light that can be measured in the inertial system. Finally, the anisotropy of the microwave background radiation has been explained by using the presented theory. According to the body kinematics model presented in this article, anisotropy of cosmic microwave background is the Doppler effect for observer moving in the UFR.展开更多
Extension Principles play a significant role in the construction of MRA based wavelet frames and have attracted much attention for their potential applications in various scientific fields. A novel and simple procedur...Extension Principles play a significant role in the construction of MRA based wavelet frames and have attracted much attention for their potential applications in various scientific fields. A novel and simple procedure for the construction of tight wavelet frames generated by the Walsh polynomials using Extension Principles was recently considered by Shah in [Tight wavelet frames generated by the Walsh poly- nomials, Int. J. Wavelets, Multiresolut. Inf. Process., 11(6) (2013), 1350042]. In this paper, we establish a complete characterization of tight wavelet frames generated by the Walsh polynomials in terms of the polyphase matrices formed by the polyphase components of the Walsh polynomials.展开更多
The electrodynamics both in RF with prescribed law of motion and in FR with prescribed structure is considered. Parallel comparison for solutions in “uniformly accelerated” NRF M?ller system and in uniformly acceler...The electrodynamics both in RF with prescribed law of motion and in FR with prescribed structure is considered. Parallel comparison for solutions in “uniformly accelerated” NRF M?ller system and in uniformly accelerated rigid NFR in the space of the constant curvature is carried out. The stationary criterion is formulated. On the basis of this criterion, one of the “eternal physical problems” concerning the field at uniformly accelerated charge motion is considered. The problems of electromagnetic wave spreading, Doppler’s effect and field transformations are discussed.展开更多
In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved ...In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved that space and time are de-pendent and must be treated inseparably. Minkowski adopted a four-dimensional space-time frame and indirectly revealed the dependency of space and time by adding a constraint for an event interval. Since space and time are inseparable, a three-dimensional space-time frame can be constructed by embedding time into space to directly show the interdependency of space and time. The formula for time dilation, length contraction, and the Lorenz transformation can be derived from graphs utilizing this new frame. The proposed three-dimensional space-time frame is an alternate frame that can be used to describe motions of objects, and it may improve teaching and learning Special Relativity and provide additional insights into space and time.展开更多
文摘A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.
文摘Scalar-tensor theories of gravity are considered to be competitors to Einstein's theory of general relativity for the description of classical gravity,as they are used to build feasible models for cosmic inflation.These theories can be formulated both in the Jordan and Einstein frame,which are related by a Weyl transformation with a field transformation,known together as a frame transformation.These theories formulated in the above two frames are often considered to be equivalent from the point of view of classical theory.However,this is no longer true from the quantum field theoretical perspective.In the present article,we show that the Ward identities derived in the above two frames are not connected through the frame transformation.This shows that the quantum field theories formulated in these two frames are not equivalent to each other.Moreover,this inequivalence is also shown by comparing the effective actions derived in these two frames.
文摘In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.
文摘<div style="text-align:justify;"> Digital watermarking technology plays a powerful role in the effective protection of digital media copyright, image authentication, image sharing, image information transmission and other fields. Driven by strong demand, digital image watermarking technology has aroused widespread research interest and has gradually developed into one of the most active research directions in information science. In this paper, we present a novel robust digital watermarking algorithm based on discrete radon transform tight frame in finite-set (FDRT). FDRT of the zero mean image is a tight frame, the frame boundary <em><strong>A</strong></em> = <em><strong>B</strong></em> = 1, the dual of the frame is itself. The decomposition and reconstruction of the FDRT tight frame will not cause the phenomenon of image distortion. The embedding of hidden watermark is to add a weak signal to the strong background of the original image. Watermark extraction is to effectively identify the embedded weak signal. The feasibility of the watermarking algorithm is analyzed from two aspects of information hiding and robustness. We select the independent Gaussian random vector as the watermark series, and the peak signal-to-noise ratio (PSNR) as the visual degradation criterion of the watermark image. Basing the FDRT compact stand dual operator, we derived the relationship among the strength parameter, square sum of watermark series, the PSNR. Using Checkmark system, the simulation results show that the algorithm is robust enough to some very important image processing attacks such as lossy compression, MAP, filtering, segmentation, edge enhancement, jitter, quadratic modulation and general geometric attack (scaling, rotation, shearing), etc. </div>
基金Supported by International S&T Cooperation Program of China(Grant No.2012DFA70260)High-end CNC Machine and Basic Manufacturing Equipment of Chinese Key National Science and Technology(Grant No.2011ZX04014-081)
文摘The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the twin robots cannot reach the same point to complete the process of workpiece frame positioning. Thus, a new method is proposed to solve the problem of coincidence between workpiece frames. Transformation between two robot base frames is initiated by measuring the coordinate values of three non-collinear calibration points. The relationship between the workpiece frame and that of the slave robot base frame is then determined according to the known transformation of two robot base frames, as well as the relationship between the workpiece frame and that of the master robot base frame. Only one robot is required to actually measure the coordinate values of the calibration points on the workpiece. This requirement is beneficial when one of the robots cannot reach and measure the calibration points. The coordinate values of the calibration points are derived by driving the robot hand to the points and recording the values of top center point(TCP) coordinates. The translation and rotation matrices relate either the two robot base frames or the workpiece and master robot. The coordinated are solved using the measured values of the calibration points according to the Cartesian transformation principle. An optimal method is developed based on exponential mapping of Lie algebra to ensure that the rotation matrix is orthogonal. Experimental results show that this method involves fewer steps, offers significant advantages in terms of operation and time-saving. A method used to synchronize workpiece frames in twin-robot system automatically is presented.
基金supported by NBHM, Department of Atomic Energy, Government of India (Grant No. 2/48(8)/2016/NBHM(R.P)/R&D II/13924)
文摘Wavelet frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of science and engineering. Finding general and verifiable conditions which imply that the wavelet systems are wavelet frames is among the core problems in time-frequency analysis. In this article, we establish some new inequalities for wavelet frames on local fields of positive characteristic by means of the Fourier transform. As an application, an improved version of the Li-Jiang inequality for wavelet frames on local fields is obtained.
文摘In this article, we introduce a notion of nonuniform wavelet frames on local fields of positive characteristic. Furthermore, we gave a complete characterization of tight nonuniform wavelet frames on local fields of positive characteristic via Fourier transform. Our results also hold for the Cantor dyadic group and the Vilenkin groups as they are local fields of positive characteristic.
文摘It is commonly thought that the Michelson-Morley experiment from 1887 and Kennedy-Thorndike experiment from 1932 demonstrated that the universal frame of reference (ether) does not exist and that the velocity of light in vacuum is absolutely constant. The analysis of this experiment led to the creation of the Special Theory of Relativity (STR). The article explains why Michelson-Morley and Kennedy-Thorndike experiments could not detect the universal frame of reference. In this article, a different transformation of time and position than the Lorentz transformation is derived on the basis of the geometric analysis of the Michelson-Morley and Kennedy-Thorndike experiments. The transformation is derived based on the assumption that the universal frame of reference (UFR) exists. UFR is a frame of reference in which the velocity of light is constant in every direction. In inertial frames of reference moving in the UFR, the velocity of light may be different. The article has derived the formula for relative speed and patterns for the maximum and minimum speed of light that can be measured in the inertial system. Finally, the anisotropy of the microwave background radiation has been explained by using the presented theory. According to the body kinematics model presented in this article, anisotropy of cosmic microwave background is the Doppler effect for observer moving in the UFR.
文摘Extension Principles play a significant role in the construction of MRA based wavelet frames and have attracted much attention for their potential applications in various scientific fields. A novel and simple procedure for the construction of tight wavelet frames generated by the Walsh polynomials using Extension Principles was recently considered by Shah in [Tight wavelet frames generated by the Walsh poly- nomials, Int. J. Wavelets, Multiresolut. Inf. Process., 11(6) (2013), 1350042]. In this paper, we establish a complete characterization of tight wavelet frames generated by the Walsh polynomials in terms of the polyphase matrices formed by the polyphase components of the Walsh polynomials.
文摘The electrodynamics both in RF with prescribed law of motion and in FR with prescribed structure is considered. Parallel comparison for solutions in “uniformly accelerated” NRF M?ller system and in uniformly accelerated rigid NFR in the space of the constant curvature is carried out. The stationary criterion is formulated. On the basis of this criterion, one of the “eternal physical problems” concerning the field at uniformly accelerated charge motion is considered. The problems of electromagnetic wave spreading, Doppler’s effect and field transformations are discussed.
文摘In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved that space and time are de-pendent and must be treated inseparably. Minkowski adopted a four-dimensional space-time frame and indirectly revealed the dependency of space and time by adding a constraint for an event interval. Since space and time are inseparable, a three-dimensional space-time frame can be constructed by embedding time into space to directly show the interdependency of space and time. The formula for time dilation, length contraction, and the Lorenz transformation can be derived from graphs utilizing this new frame. The proposed three-dimensional space-time frame is an alternate frame that can be used to describe motions of objects, and it may improve teaching and learning Special Relativity and provide additional insights into space and time.