Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator i...Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator is considered.Furthermore by using the familiar Riesz-Dunford integral,a linear operator on Hilbert space H is introduced.A new subclass of p-valent functions related to an operator on H is defined.Coefficient estimate,distortion bound and extreme points are obtained.The convolution-preserving property is also investigated.展开更多
In this paper, we have studied the topology of some classical functional spaces. Among these spaces, there are standard spaces, spaces that can be metrizable and others that cannot be metrizable. But they are all topo...In this paper, we have studied the topology of some classical functional spaces. Among these spaces, there are standard spaces, spaces that can be metrizable and others that cannot be metrizable. But they are all topological vector spaces and it is in this context that we have chosen to present this work. We are interested in the topology of its spaces and in the topologies of their dual spaces. The first part, we presented the fundamental topological properties of topological vector spaces. The second part, we studied Frechet spaces and particularly the space S(R<sup>n</sup>) of functions of class C<sup>∞ </sup>on R<sup>n</sup> which are as well as all their rapidly decreasing partial derivatives. We have also studied its dual S'(Rn</sup>) the space of tempered distributions. The last part aims to define a topological structure on an increasing union of Frechet spaces called inductive limit of Frechet spaces. We study in particular the space D(Ω) of functions of class C<sup>∞</sup> with compact supports on Ω as well as its dual D' (Ω) the space distributions over the open set Ω.展开更多
Relations of the 3D multi-directional derivatives are studied in this paper. These relations are applied to a geeral second-order linear elliptical operator and the corresponding expression are obtained. These relatio...Relations of the 3D multi-directional derivatives are studied in this paper. These relations are applied to a geeral second-order linear elliptical operator and the corresponding expression are obtained. These relations and expressions play important roles in the meshless finite point method.展开更多
In this paper, boundedness and compactness of the composition operator on the generalized Lipschitz spaces Λα (α 〉 1) of holomorphic functions in the unit disk are characterized.
In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Mille...In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Miller-Ross sense. The considered problem is a generalization of well-known Dirichlet and Neumann problems.展开更多
Let φ and ψ be linear fractional self\|maps of the unit disk D and X a separable Hilbert space. In this paper we completely characterize the weak compactness of the product operators of a composition operation C φ...Let φ and ψ be linear fractional self\|maps of the unit disk D and X a separable Hilbert space. In this paper we completely characterize the weak compactness of the product operators of a composition operation C φ with another one's adjoint C * ψ on the vector\|valued Bergman space B 1(X) for forms C φC * ψ and C * ψC φ.展开更多
This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouvill...This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.展开更多
Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are ...Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are non-trivial elements of N. Let A contain all rank one operators in AlgN and δ : A→ B(X) be an additive mapping. It is shown that, if δ is (α, β)-derivable at zero point, then there exists an additive (α, β)-derivation τ : A →β(X) such that δ(A) =τ(A) + α(A)δ(I) for all A∈A. It is also shown that if δ is generalized (α,β)-derivable at zero point, then δ is an additive generalized (α, β)-derivation. Moreover, by use of this result, the additive maps (generalized) (α,β)-derivable at zero point on several nest algebras, are also characterized.展开更多
Let K be a field of characteristic p>0 . We prove that the derivative algebra of K[x 1,…,x n] is a proer subring of the ring of differential operators of K[x 1,…,x n] . A concrete example is given to show that th...Let K be a field of characteristic p>0 . We prove that the derivative algebra of K[x 1,…,x n] is a proer subring of the ring of differential operators of K[x 1,…,x n] . A concrete example is given to show that there is a differential operator of order p that does not belong to the derivative algebra. By these results, is follows that the derivative algebra is Morita equivalent to K[x p 1,…,x p n] , and hence its global homological dimension, Krull dimension, K 0 group and some other properties are got.展开更多
In this work, we investigate the solvability of the boundary value problem for the Poisson equation, involving a generalized Riemann-Liouville and the Caputo derivative of fractional order in the class of smooth funct...In this work, we investigate the solvability of the boundary value problem for the Poisson equation, involving a generalized Riemann-Liouville and the Caputo derivative of fractional order in the class of smooth functions. The considered problems are generalization of the known Dirichlet and Neumann oroblems with operators of a fractional order.展开更多
The object of the present paper is to investigate various argument results of analytic and multivalent functions which are defined by using a certain fractional derivative operator. Some interesting applications are a...The object of the present paper is to investigate various argument results of analytic and multivalent functions which are defined by using a certain fractional derivative operator. Some interesting applications are also considered.展开更多
In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to w...In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to wφ^24 (f, t)∞. In this paper we improve the previous results and give a weighted approximation equivalence theorem.展开更多
Differential equations of electromagnetic and similar physical fields are generally solved via antiderivative Green’s functions involving integration over a region and its boundary. Research on the Kasner metric reve...Differential equations of electromagnetic and similar physical fields are generally solved via antiderivative Green’s functions involving integration over a region and its boundary. Research on the Kasner metric reveals a variable boundary deemed inappropriate for standard anti-derivatives, suggesting the need for an alternative solution technique. In this work I derive such a solution and prove its existence, based on circulation equations in which the curl of the field is induced by source current density and possibly changes in associated fields. We present an anti-curl operator that is believed novel and we prove that it solves for the field without integration required.展开更多
The aim of the present work is to study the complete, vertical and horizontal lifts using Tachibana and Visknnevskii operators along generalized almost r-contact structure in tangent bundle. We also prove certain theo...The aim of the present work is to study the complete, vertical and horizontal lifts using Tachibana and Visknnevskii operators along generalized almost r-contact structure in tangent bundle. We also prove certain theorems on Tachibana and Visknnevskii operators with Lie derivative and lifts.展开更多
In the present paper, we obtain estimations of convergence rate derivatives of the q-Bernstein polynomials Bn (f, qn ;x) approximating to f' (x) as n →∞, which is a general- ization of that relating the classic...In the present paper, we obtain estimations of convergence rate derivatives of the q-Bernstein polynomials Bn (f, qn ;x) approximating to f' (x) as n →∞, which is a general- ization of that relating the classical case qn = 1. On the other hand, we study the conver- gence properties of derivatives of the limit q-Bernstein operators B∞(f, q;x) as q→1-.展开更多
文摘Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator is considered.Furthermore by using the familiar Riesz-Dunford integral,a linear operator on Hilbert space H is introduced.A new subclass of p-valent functions related to an operator on H is defined.Coefficient estimate,distortion bound and extreme points are obtained.The convolution-preserving property is also investigated.
文摘In this paper, we have studied the topology of some classical functional spaces. Among these spaces, there are standard spaces, spaces that can be metrizable and others that cannot be metrizable. But they are all topological vector spaces and it is in this context that we have chosen to present this work. We are interested in the topology of its spaces and in the topologies of their dual spaces. The first part, we presented the fundamental topological properties of topological vector spaces. The second part, we studied Frechet spaces and particularly the space S(R<sup>n</sup>) of functions of class C<sup>∞ </sup>on R<sup>n</sup> which are as well as all their rapidly decreasing partial derivatives. We have also studied its dual S'(Rn</sup>) the space of tempered distributions. The last part aims to define a topological structure on an increasing union of Frechet spaces called inductive limit of Frechet spaces. We study in particular the space D(Ω) of functions of class C<sup>∞</sup> with compact supports on Ω as well as its dual D' (Ω) the space distributions over the open set Ω.
基金Supported by the National Natural Science Foundation of China 1060100910701014+1 种基金10871029)the Foundation of China Academy of Engineering Physics (2007B09008)
文摘Relations of the 3D multi-directional derivatives are studied in this paper. These relations are applied to a geeral second-order linear elliptical operator and the corresponding expression are obtained. These relations and expressions play important roles in the meshless finite point method.
基金Supported in part by the National Natural Science Foundation of China (10971219)
文摘In this paper, boundedness and compactness of the composition operator on the generalized Lipschitz spaces Λα (α 〉 1) of holomorphic functions in the unit disk are characterized.
基金financially supported by a grant from the Ministry of Science and Education of the Republic of Kazakhstan(0819/GF4)
文摘In the paper we study questions about solvability of some boundary value prob- lems for a non-homogenous poly-harmonic equation. As a boundary operator we consider differentiation operator of fractional order in Miller-Ross sense. The considered problem is a generalization of well-known Dirichlet and Neumann problems.
文摘Let φ and ψ be linear fractional self\|maps of the unit disk D and X a separable Hilbert space. In this paper we completely characterize the weak compactness of the product operators of a composition operation C φ with another one's adjoint C * ψ on the vector\|valued Bergman space B 1(X) for forms C φC * ψ and C * ψC φ.
基金partially supportedby Ministerio de Ciencia e Innovacion-SPAINFEDER,project MTM2010-15314supported by the Ministry of Science and Education of the Republic of Kazakhstan through the Project No.0713 GF
文摘This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.
文摘Let A be a subalgebra of B(X) containing the identity operator I and an idempotent P. Suppose that α,β: A →A are ring epimorphisms and there exists some nest N on 2( such that α(P)(X) and β(P)(X) are non-trivial elements of N. Let A contain all rank one operators in AlgN and δ : A→ B(X) be an additive mapping. It is shown that, if δ is (α, β)-derivable at zero point, then there exists an additive (α, β)-derivation τ : A →β(X) such that δ(A) =τ(A) + α(A)δ(I) for all A∈A. It is also shown that if δ is generalized (α,β)-derivable at zero point, then δ is an additive generalized (α, β)-derivation. Moreover, by use of this result, the additive maps (generalized) (α,β)-derivable at zero point on several nest algebras, are also characterized.
文摘Let K be a field of characteristic p>0 . We prove that the derivative algebra of K[x 1,…,x n] is a proer subring of the ring of differential operators of K[x 1,…,x n] . A concrete example is given to show that there is a differential operator of order p that does not belong to the derivative algebra. By these results, is follows that the derivative algebra is Morita equivalent to K[x p 1,…,x p n] , and hence its global homological dimension, Krull dimension, K 0 group and some other properties are got.
文摘In this work, we investigate the solvability of the boundary value problem for the Poisson equation, involving a generalized Riemann-Liouville and the Caputo derivative of fractional order in the class of smooth functions. The considered problems are generalization of the known Dirichlet and Neumann oroblems with operators of a fractional order.
文摘The object of the present paper is to investigate various argument results of analytic and multivalent functions which are defined by using a certain fractional derivative operator. Some interesting applications are also considered.
文摘In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to wφ^24 (f, t)∞. In this paper we improve the previous results and give a weighted approximation equivalence theorem.
文摘Differential equations of electromagnetic and similar physical fields are generally solved via antiderivative Green’s functions involving integration over a region and its boundary. Research on the Kasner metric reveals a variable boundary deemed inappropriate for standard anti-derivatives, suggesting the need for an alternative solution technique. In this work I derive such a solution and prove its existence, based on circulation equations in which the curl of the field is induced by source current density and possibly changes in associated fields. We present an anti-curl operator that is believed novel and we prove that it solves for the field without integration required.
文摘The aim of the present work is to study the complete, vertical and horizontal lifts using Tachibana and Visknnevskii operators along generalized almost r-contact structure in tangent bundle. We also prove certain theorems on Tachibana and Visknnevskii operators with Lie derivative and lifts.
文摘In the present paper, we obtain estimations of convergence rate derivatives of the q-Bernstein polynomials Bn (f, qn ;x) approximating to f' (x) as n →∞, which is a general- ization of that relating the classical case qn = 1. On the other hand, we study the conver- gence properties of derivatives of the limit q-Bernstein operators B∞(f, q;x) as q→1-.