Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of ...Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive.展开更多
文摘Type-I censoring mechanism arises when the number of units experiencing the event is random but the total duration of the study is fixed. There are a number of mathematical approaches developed to handle this type of data. The purpose of the research was to estimate the three parameters of the Frechet distribution via the frequentist Maximum Likelihood and the Bayesian Estimators. In this paper, the maximum likelihood method (MLE) is not available of the three parameters in the closed forms;therefore, it was solved by the numerical methods. Similarly, the Bayesian estimators are implemented using Jeffreys and gamma priors with two loss functions, which are: squared error loss function and Linear Exponential Loss Function (LINEX). The parameters of the Frechet distribution via Bayesian cannot be obtained analytically and therefore Markov Chain Monte Carlo is used, where the full conditional distribution for the three parameters is obtained via Metropolis-Hastings algorithm. Comparisons of the estimators are obtained using Mean Square Errors (MSE) to determine the best estimator of the three parameters of the Frechet distribution. The results show that the Bayesian estimation under Linear Exponential Loss Function based on Type-I censored data is a better estimator for all the parameter estimates when the value of the loss parameter is positive.