In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
Internal loss is a key internal parameter for high power 1060-nm InGaAs/A1GaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum welt (QW) AIGaAs separate conf...Internal loss is a key internal parameter for high power 1060-nm InGaAs/A1GaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum welt (QW) AIGaAs separate confinement het- erostructure semiconductor laser, and the method to reduce internal loss. By light doping the n-cladding layer, and stepwise doping the p-cladding layer combined with the expanded waveguide layer, a broad area laser with internal loss of 1/cm is designed and fabricated. Ridge waveguide laser with an output power of 350 mW is obtained. The threshold current and slope efficiency near the threshold current are 20 mA and 0.8 W/A, respectively.展开更多
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274046,61335009,61201103,and 61320106013)the National High Technology Research and Development Program of China(Grant No.2013AA014202)
文摘Internal loss is a key internal parameter for high power 1060-nm InGaAs/A1GaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum welt (QW) AIGaAs separate confinement het- erostructure semiconductor laser, and the method to reduce internal loss. By light doping the n-cladding layer, and stepwise doping the p-cladding layer combined with the expanded waveguide layer, a broad area laser with internal loss of 1/cm is designed and fabricated. Ridge waveguide laser with an output power of 350 mW is obtained. The threshold current and slope efficiency near the threshold current are 20 mA and 0.8 W/A, respectively.