Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall ...Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall current and constant heat flux. It is considered that the porous plate is subjected to constant heat flux. The obtained non-dimensional, non-similar coupled non-linear and partial differential equations have been solved by explicit finite difference technique. Numerical solutions for velocities, temperature and concentration distributions are obtained for various parameters by the above mentioned technique. The local and average shear stresses, Nusselt number as well as Sherwood number are also investigated. The stability conditions and convergence criteria of the explicit finite difference scheme are established for finding the restriction of the values of various parameters to get more accuracy. The obtained results are illustrated with the help of graphs to observe the effects of various legitimate parameters.展开更多
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent...The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.展开更多
Natural convective boundary layer flow and heat and mass transfer of a fluid with variable viscosity and thermal radiation over a vertical stretching surface in the presence of suction/injection is investigated by Lie...Natural convective boundary layer flow and heat and mass transfer of a fluid with variable viscosity and thermal radiation over a vertical stretching surface in the presence of suction/injection is investigated by Lie group analysis. Fluid viscosity is assumed to vary as a linear function of temperature. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling group of transformations. An exact solution is obtained for translation symmetry and numerical solutions for scaling symmetry. The effects of fluid viscosity and thermal radiation on the dimensionless velocity, temperature and concentration profiles are shown graphically. Comparisons with previously published works are performed and excellent agreement between the results is obtained. The conclusion is drawn that the flow field and temperature profiles are significantly influenced by these parameters.展开更多
In this paper we consider the nonstationary 1D flow of the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamically sense perfect and polytropic. The fluid is between a s...In this paper we consider the nonstationary 1D flow of the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamically sense perfect and polytropic. The fluid is between a static solid wall and a free boundary connected to a vacuum state. We take the homogeneous boundary conditions for velocity, microrotation and heat flux on the solid border and that the normal stress, heat flux and microrotation are equal to zero on the free boundary. The proof of the global existence of the solution is based on a limit procedure. We define the finite difference approximate equations system and construct the sequence of approximate solutions that converges to the solution of our problem globally in time.展开更多
A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whet...A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whether the cross shear is introduced in theinitial time or in early stage. If cross shear is introduced in the stage that the roll-up ofmixing layer occurs, the turbulent intensities of now will increase and mixture of now willbe enhanced.展开更多
In this paper,an equation system of electrohydrodynamics(EHD)based onthe fluid motion equations is discussed.Emphasis is put on the effects of electrical forceand surface tension upon the fluid motion.The Marker and C...In this paper,an equation system of electrohydrodynamics(EHD)based onthe fluid motion equations is discussed.Emphasis is put on the effects of electrical forceand surface tension upon the fluid motion.The Marker and Cell method is used to set up acomputational simulation program of electrically driven motion of fluid.With the help ofthe program,a cylindrical fluid under the influences of electrical field and surface tensionhas been calculated.The result is in good agreement with the experimental observation.展开更多
Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate t...Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.展开更多
Several methods have been used to approximate free surface boundaries in finite difference numerical simulations. Each of these methods has its advantages and disadvantages. This paper presents a new technique for th...Several methods have been used to approximate free surface boundaries in finite difference numerical simulations. Each of these methods has its advantages and disadvantages. This paper presents a new technique for the numerical solution of transient incompressible free surface fluid flows. This powerful method, which is based on the concepts of “Buoy positioning” and “Buoy relaying\', successfully represents the free surface using a Lagrangian method on a Eulerian grid by directly solving the free surface evolution equation. The Eulerian finite\|difference forms of the full Navier\|Stokes equations are solved by the Successive over Relaxation (SOR) method with a set of buoys to keep track of the free surface. The capabilities of the analysis procedure are demonstrated through viscous free surface fluid flow examples. The method is simpler and more efficient than other methods especially in treating complicated free boundary configurations.展开更多
In this paper we study a numerical method for the simulation of free surface flows of viscoplastic (Herschel-Bulkley) fluids. The approach is based on the level set method for capturing the free surface evolution an...In this paper we study a numerical method for the simulation of free surface flows of viscoplastic (Herschel-Bulkley) fluids. The approach is based on the level set method for capturing the free surface evolution and on locally refined and dynamically adapted octree cartesian staggered grids for the discretization of fluid and level set equations. A regu- larized model is applied to handle the non-differentiability of the constitutive relations. We consider an extension of the stable approximation of the Newtonian flow equations on staggered grid to approximate the viscoplastic model and level-set equations if the free boundary evolves and the mesh is dynamically refined or coarsened. The numerical method is first validated for a Newtonian case. In this case, the convergence of numerical solutions is observed towards experimental data when the mesh is refined. Further we compute several 3D viscoplastic Herschel-Bulkley fluid flows over incline planes for the dam-break problem. The qualitative comparison of numerical solutions is done versus experimental investigations. Another numerical example is given by computing the freely oscillating viscoplastic droplet, where the motion of fluid is driven by the surface tension forces. Altogether the considered techniques and algorithms (the level-set method, compact discretizations on dynamically adapted octree cartesian grids, regularization, and the surface tension forces approximation) result in efficient approach to modeling viscoplastic free-surface flows in possibly complex 3D geometries.展开更多
文摘Unsteady MHD natural convective heat and mass transfer flow through a semi-infinite vertical porous plate in a rotating system have been investigated with the combined Soret and Dufour effects in the presence of Hall current and constant heat flux. It is considered that the porous plate is subjected to constant heat flux. The obtained non-dimensional, non-similar coupled non-linear and partial differential equations have been solved by explicit finite difference technique. Numerical solutions for velocities, temperature and concentration distributions are obtained for various parameters by the above mentioned technique. The local and average shear stresses, Nusselt number as well as Sherwood number are also investigated. The stability conditions and convergence criteria of the explicit finite difference scheme are established for finding the restriction of the values of various parameters to get more accuracy. The obtained results are illustrated with the help of graphs to observe the effects of various legitimate parameters.
基金supported by the Basic Research on Drilling & Completion of Critical Wells for Oil & Gas (Grant No. 51221003)National Science Fund for Petrochemical Industry (Project No. U1262201)+2 种基金"863" National Project (Project No. 2013AA064803)National Science Fund for Distinguished Young Scholars (Project No. 50925414)National Natural Science Foundation (Project No. 51074173)
文摘The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance.
文摘Natural convective boundary layer flow and heat and mass transfer of a fluid with variable viscosity and thermal radiation over a vertical stretching surface in the presence of suction/injection is investigated by Lie group analysis. Fluid viscosity is assumed to vary as a linear function of temperature. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling group of transformations. An exact solution is obtained for translation symmetry and numerical solutions for scaling symmetry. The effects of fluid viscosity and thermal radiation on the dimensionless velocity, temperature and concentration profiles are shown graphically. Comparisons with previously published works are performed and excellent agreement between the results is obtained. The conclusion is drawn that the flow field and temperature profiles are significantly influenced by these parameters.
基金supported by Scientific Research of the University of Rijeka(13.14.1.3.03)
文摘In this paper we consider the nonstationary 1D flow of the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamically sense perfect and polytropic. The fluid is between a static solid wall and a free boundary connected to a vacuum state. We take the homogeneous boundary conditions for velocity, microrotation and heat flux on the solid border and that the normal stress, heat flux and microrotation are equal to zero on the free boundary. The proof of the global existence of the solution is based on a limit procedure. We define the finite difference approximate equations system and construct the sequence of approximate solutions that converges to the solution of our problem globally in time.
文摘A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whether the cross shear is introduced in theinitial time or in early stage. If cross shear is introduced in the stage that the roll-up ofmixing layer occurs, the turbulent intensities of now will increase and mixture of now willbe enhanced.
文摘In this paper,an equation system of electrohydrodynamics(EHD)based onthe fluid motion equations is discussed.Emphasis is put on the effects of electrical forceand surface tension upon the fluid motion.The Marker and Cell method is used to set up acomputational simulation program of electrically driven motion of fluid.With the help ofthe program,a cylindrical fluid under the influences of electrical field and surface tensionhas been calculated.The result is in good agreement with the experimental observation.
基金the Committee for Advanced Studies and Research(CASR)Bangladesh University of Engineering and Technology for granting research fundsub-project CP No.2084 of Department of Naval Architecture and Marine Engineering under Higher Education Quality Enhancement Project(HEQEP),UGC,Ministry of Education,Govt.of Bangladesh for providing necessary research facilities during the current research work
文摘Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.
文摘Several methods have been used to approximate free surface boundaries in finite difference numerical simulations. Each of these methods has its advantages and disadvantages. This paper presents a new technique for the numerical solution of transient incompressible free surface fluid flows. This powerful method, which is based on the concepts of “Buoy positioning” and “Buoy relaying\', successfully represents the free surface using a Lagrangian method on a Eulerian grid by directly solving the free surface evolution equation. The Eulerian finite\|difference forms of the full Navier\|Stokes equations are solved by the Successive over Relaxation (SOR) method with a set of buoys to keep track of the free surface. The capabilities of the analysis procedure are demonstrated through viscous free surface fluid flow examples. The method is simpler and more efficient than other methods especially in treating complicated free boundary configurations.
文摘In this paper we study a numerical method for the simulation of free surface flows of viscoplastic (Herschel-Bulkley) fluids. The approach is based on the level set method for capturing the free surface evolution and on locally refined and dynamically adapted octree cartesian staggered grids for the discretization of fluid and level set equations. A regu- larized model is applied to handle the non-differentiability of the constitutive relations. We consider an extension of the stable approximation of the Newtonian flow equations on staggered grid to approximate the viscoplastic model and level-set equations if the free boundary evolves and the mesh is dynamically refined or coarsened. The numerical method is first validated for a Newtonian case. In this case, the convergence of numerical solutions is observed towards experimental data when the mesh is refined. Further we compute several 3D viscoplastic Herschel-Bulkley fluid flows over incline planes for the dam-break problem. The qualitative comparison of numerical solutions is done versus experimental investigations. Another numerical example is given by computing the freely oscillating viscoplastic droplet, where the motion of fluid is driven by the surface tension forces. Altogether the considered techniques and algorithms (the level-set method, compact discretizations on dynamically adapted octree cartesian grids, regularization, and the surface tension forces approximation) result in efficient approach to modeling viscoplastic free-surface flows in possibly complex 3D geometries.