期刊文献+
共找到760篇文章
< 1 2 38 >
每页显示 20 50 100
Impact dynamics analysis of free-floating space manipulator capturing satellite on orbit and robust adaptive compound control algorithm design for suppressing motion 被引量:8
1
作者 董楸煌 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第4期413-422,共10页
The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space m... The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm. 展开更多
关键词 free-floating space manipulator satellite capturing impact dynamics robust adaptive compound control
下载PDF
THE ROBUST CONTROL SCHEME FOR FREE-FLOATING SPACE MANIPULATOR TO TRACK THE DESIRED TRAJECTORY IN JOINTSPACE 被引量:6
2
作者 Chen Li (Department of Mechanical Engineering, Fuzhou University, Fuzhou 350002, China) Liu Yanzhu (Department of Engineering Mechanics,Shanghai Jiaotong University, Shanghai 200030, China) 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第2期183-188,共6页
The control of a free-floating space manipulator system isdiscussed. With the augmentation approach, the nonlinearparameterization problem of the dynamic equations of the spacemanipulator system is overcome. Based on ... The control of a free-floating space manipulator system isdiscussed. With the augmentation approach, the nonlinearparameterization problem of the dynamic equations of the spacemanipulator system is overcome. Based on the results, the robustcontrol scheme for free-floating space manipulator with uncer- tainpayload parameters to track the desired trajectory in jointspace isproposed, and the global convergence of the tracking is verified byusing the Lyapunov method. 展开更多
关键词 free-floating space maniulator augmentation approach robust control
下载PDF
Motion planning for redundant prismatic-jointed manipulators in the free-floating mode
3
作者 Xiao-Dong Liu He-Xi Baoyin Xing-Rui Ma 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1449-1456,共8页
This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. H... This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The co- efficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simulta- neously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method pro- vides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators. 展开更多
关键词 Motion planning - Prismatic joints - space manipulators Redundant manipulators free-floating robots ~Nonholonomic planning
下载PDF
Spatial Operator Algebra for Free-floating Space Robot Modeling and Simulation 被引量:9
4
作者 TIAN Zhixiang WU Hongtao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期635-640,共6页
As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simu... As the dynamic equations of space robots are highly nonlinear,strongly coupled and nonholonomic constrained,the efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation.This paper combines an efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to establish dynamic equations for the free-floating space robot,and analyzes the influence to the base body's position and posture when the manipulator is capturing a target.The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency.The high efficient SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding,and its computational complexity grows only linearly with the number of degrees of freedom.Finally,a space robot with three degrees of freedom manipulator is simulated in Matematica 6.0.Compared with ADAMS,the simulation reveals that the SOA algorithm is much more efficient to solve the forward and inverse dynamic problems.As a result,the requirements of real-time simulation for dynamics of free-floating space robot are solved and a new analytic modeling system is established for free-floating space robot. 展开更多
关键词 nonholonomic constrained spatial operator algebra DYNAMIC free-floating space robot
下载PDF
Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space 被引量:3
5
作者 Liangyong WANG Tianyou CHAI Zheng FANG 《控制理论与应用(英文版)》 EI 2009年第2期112-118,共7页
A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task sp... A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies. 展开更多
关键词 Robotic manipulator Motion control Neural network Task space
下载PDF
Motion Planning Algorithm and Simulation for Space Manipulators
6
作者 吴为民 洪炳熔 +1 位作者 刘宏 吴葳 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第2期40-44,共5页
The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described i... The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described in detail according to these strategies. 展开更多
关键词 ss: space manipulATOR collision-free PATH planning configuration space graph SEARCHING
下载PDF
On the Dynamics of Space Manipulators
7
作者 陈雄标 姚英学 +1 位作者 袁哲俊 韩向利 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1995年第2期48-52,共5页
A new conceptually simple analytical modeling method for space manipulators is introduced.By means of the new method,a control method for space manipulators based on the resolved motion acceleration is developed.The p... A new conceptually simple analytical modeling method for space manipulators is introduced.By means of the new method,a control method for space manipulators based on the resolved motion acceleration is developed.The proposed method is applicable not only to the system consisting of a single manipulator but also to the system consisting of multiple manipulators. 展开更多
关键词 ss:Dynamics space manipulators DYNAMIC COUPLING
下载PDF
Singular perturbation composite control of a free-floating flexible dual-arm space robot
8
作者 罗战武 王从庆 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第1期43-47,70,共6页
The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. ... The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods. 展开更多
关键词 free-floating Flexible Dual-arm space Robot singular perturbation robust tracking control vibration suppression
下载PDF
Motion Planning for Minimizing Base Disturbance of Space Manipulators
9
作者 纪路 周东生 张强 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期252-256,共5页
A simulated annealing particle swarm optimization(PSO)algorithm is utilized in this paper to plan the motion of space manipulators with minimized base disturbance,not only its attitude but also its position.Since spac... A simulated annealing particle swarm optimization(PSO)algorithm is utilized in this paper to plan the motion of space manipulators with minimized base disturbance,not only its attitude but also its position.Since space manipulators must meet the Law of Momentum Conservation,any motion of manipulators will disturb the spacecraft which is free-float in the space environment.This paper tries to limit this effect to the minimum.First,this paper establishes the mathematical model for space manipulators by generalized Jacobian matrix(GJM) and analyzes its inverse kinematics by Theory of Screws.Second,a polynomial function of seventh degree is used to parameterize the joint motion and quaternion representation is also used to represent attitude of spacecraft.Moreover,this paper designs a proper objective function and depicts this algorithm detailedly and clearly.Finally,the results of numerical simulation are verified by the proposed algorithm. 展开更多
关键词 utilized kinematics verified disturbance inverse annealing attitude polynomial effector spacecraft
下载PDF
Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance 被引量:3
10
作者 郭益深 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第5期583-590,共8页
The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynami... The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effector of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme. 展开更多
关键词 free-floating space rigid manipulator external disturbance terminal slidingsurface coordinated motion terminal sliding mode control
下载PDF
Design Schemes and Comparison Research of the End-effector of Large Space Manipulator 被引量:15
11
作者 FENG Fei LIU Yiwei LIU Hong CAI Hegao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期674-687,共14页
The end-effector of the large space manipulator is employed to assist the manipulator in handling and manipulating large payloads on orbit.Currently,there are few researches about the end-effector,and the existing end... The end-effector of the large space manipulator is employed to assist the manipulator in handling and manipulating large payloads on orbit.Currently,there are few researches about the end-effector,and the existing end-effectors have some disadvantages,such as poor misalignment tolerance capability and complex mechanical components.According to the end positioning errors and the residual vibration characters of the large space manipulators,two basic performance requirements of the end-effector which include the capabilities of misalignment tolerance and soft capture are proposed.And the end-effector should accommodate the following misalignments of the mechanical interface.The translation misalignments in axial and radial directions and the angular misalignments in roll,pitch and yaw are ±100 mm,100 mm,±10°,±15°,±15°,respectively.Seven end-effector schemes are presented and the capabilities of misalignment tolerance and soft capture are analyzed elementarily.The three fingers-three petals end-effector and the steel cable-snared end-effector are the most feasible schemes among the seven schemes,and they are designed in detail.The capabilities of misalignment tolerance and soft capture are validated and evaluated,through the experiment on the micro-gravity simulating device and the dynamic analysis in ADAMS software.The results show that the misalignment tolerance capabilities of these two schemes could satisfy the requirement.And the translation misalignment tolerances in axial and radial directions and the angular misalignment tolerances in roll,pitch and yaw of the steel cable-snared end-effector are 30mm,15mm,6°,3° and 3° larger than those of the three fingers-three petals end-effector,respectively.And the contact force of the steel cable-snared end-effector is smaller and smoother than that of the three fingers-three petals end-effector.The end-effector schemes and research methods are beneficial to the developments of the large space manipulator end-effctor and the space docking mechanism. 展开更多
关键词 END-EFFECTOR large space manipulator docking mechanism soft capture misalignment tolerance passive compliance active compliance
下载PDF
Kinematics of a Trinal-Branch Space Robotic Manipulator with Redundancy 被引量:1
12
作者 贾庆轩 叶平 +1 位作者 孙汉旭 宋荆洲 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期378-384,共7页
This paper presents a trinal-branch space robotic manipulator with redundancy, due to hash application environments, such as in the station. One end-effector of the manipulator can be attached to the base, and other t... This paper presents a trinal-branch space robotic manipulator with redundancy, due to hash application environments, such as in the station. One end-effector of the manipulator can be attached to the base, and other two be controlled to accomplish tasks. The manipulator permits operation of science payload, during periods when astronauts may not be present. In order to provide theoretic basis for kinematics optimization, dynamics optimization and fault-tolerant control, its inverse kinematics is analyzed by using screw theory, and its unified formulation is established. Base on closed-form resolution of spherical wrist, a simplified inverse kinematics is proposed. Computer simulation results demonstrate the validity of the proposed inverse kinematics. 展开更多
关键词 space robotic manipulators REDUNDANCY screw theory inverse kinematics
下载PDF
Contact Tracking Control Strategy for Space Manipulator with Snare-Type End-Effector 被引量:1
13
作者 ZHANG Long CHEN Gang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期995-1003,共9页
The capture operation performed by a snare-type end-effector mainly relies on three flexible cables.This paper solves the dynamics modeling problems of flexible cable used in the snare-type end-effector and provides a... The capture operation performed by a snare-type end-effector mainly relies on three flexible cables.This paper solves the dynamics modeling problems of flexible cable used in the snare-type end-effector and provides a contact tracking control strategy for the impact phase of snare capture.To describe the motion of flexible cable,a dynamics model is established by considering both tensile and bending resistance properties.On this basis,a virtual spring concept is introduced to represent the contact between flexible cables and the target grapple shaft,and a contact dynamics model is established approximately by polynomial function with the variables of penetration and start-end distance of flexible cable.Thereafter,a contact tracking control strategy is proposed to improve the reliability of space snare capture.The target grapple shaft and flexible cable can keep in contact at the initial contact point during the whole capture process and thus reduce the possibility of pushing the target away.Experiments are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 space manipulator snare capture dynamics model control strategy
下载PDF
Interval Motion Accuracy Reliability Analysis of Manipulators Based on Chebyshev Inclusion Polynomial 被引量:1
14
作者 Juan Wei Jianguo Zhang Xiaosong Du 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第2期32-40,共9页
Motion accuracy of space manipulators has direct effects on the ability of the systems to perform specified tasks. However, some design variables are inherently interval parameters due to uncertainties in geometric st... Motion accuracy of space manipulators has direct effects on the ability of the systems to perform specified tasks. However, some design variables are inherently interval parameters due to uncertainties in geometric structures, material properties, and so on. This paper presents Chebyshev inclusion function(CIF) for approximating the dynamic responses function of parametrically excited systems. Motion accuracy reliability(MAR) of space manipulators was evaluated based on mechanism reliability analysis methods and interval uncertainty model. To illustrate the accuracy of the proposed method, a two-link manipulator with interval parameters was demonstrated. The results showed that the proposed method required much fewer samples to obtain more accurate reliability compared with the traditional Monte Carlo simulation(MCS). Finally, the sensitivity analysis was performed to facilitate the optimization design by using global sensitivity analysis. 展开更多
关键词 space manipulator motion accuracy reliability(MAR) INTERVAL theory CHEBYSHEV INCLUSION function(CIF)
下载PDF
Model-free adaptive control of space manipulator under different gravity environment 被引量:1
15
作者 Wen Yintang Gao Linqi +1 位作者 Liu Fucai Qin Li 《High Technology Letters》 EI CAS 2020年第1期53-60,共8页
Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This p... Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results. 展开更多
关键词 space manipulATOR MICROGRAVITY MODEL-FREE adaptive TRAJECTORY TRACKING control
下载PDF
BASED ON WAVELET ANALYSIS TO OPTIMAL CONTROL OF MOTION PLANNING OF SPACE MANIPULATOR
16
作者 戈新生 张奇志 刘延柱 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第10期1161-1168,共8页
The optimal control problem of nonholonomic motion planning of space manipulator was discussed. Utilizing the method of wavelet analysis, the discrete orthogonal wavelets were introduced to solve the optimal control p... The optimal control problem of nonholonomic motion planning of space manipulator was discussed. Utilizing the method of wavelet analysis, the discrete orthogonal wavelets were introduced to solve the optimal control problem, the classical Fourier basic functions were replaced by the wavelet expansion approximation. A numerical algorithm of optimal control was proposed based an wavelet analysis. The numerical simulation shows, the method is effective for nonholonomic motion planning of space manipulator. 展开更多
关键词 space manipulator motion planning optimal control wavelet analysis
下载PDF
Research on Fault-Tolerant Control System for Space Modular Manipulator System
17
作者 叶平 孙汉旭 +1 位作者 贾庆轩 王新升 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期260-265,共6页
This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for tradition... This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability. 展开更多
关键词 fault-tolerant control system space modular manipulator system commercial-off-the-shaft(COTS)
下载PDF
Trajectory Optimization for 7-Dofs Space Manipulator
18
作者 Wencheng Ni Zhihong Jiang +4 位作者 Hui Li Bo Wei Xiaoyun Li Bainan Zhang Qiang Huang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期143-149,共7页
The space manipulator is always designed to have 7 degrees of freedom(Dofs)with the consideration of energy limitation,as well as the flexible moving possibility.Therefore,how to plan the trajectory is important to ... The space manipulator is always designed to have 7 degrees of freedom(Dofs)with the consideration of energy limitation,as well as the flexible moving possibility.Therefore,how to plan the trajectory is important to improve the performance of the manipulator.In this paper,the speed of the end effector is configured as a projecting parameter,when a constant acceleration is applied to adjust the velocity.To implement this trajectory planning strategy,an optimization algorithm through the pseudo inverse of Jacobin matrix is designed,which adjusts the weight functions of joints.According to the functional theory,this algorithm is analyzed and the optimal solution is found in numerous sets of planning.A MATLAB simulation platform is established and the results verity the effectiveness of the algorithm. 展开更多
关键词 redundant degree of freedom space manipulator trajectory optimization
下载PDF
Application of camera calibrating model to space manipulator with multi-objective genetic algorithm
19
作者 王中宇 江文松 王岩庆 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1937-1943,共7页
The multi-objective genetic algorithm(MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balan... The multi-objective genetic algorithm(MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balancing its model weight and multi-parametric distributions to the required accuracy. A novel measuring instrument of space manipulator is designed to orbital simulative motion and locational accuracy test. The camera system of space manipulator, calibrated by MOGA algorithm, is used to locational accuracy test in this measuring instrument. The experimental result shows that the absolute errors are [0.07, 1.75] mm for MOGA calibrating model, [2.88, 5.95] mm for MN method, and [1.19, 4.83] mm for LM method. Besides, the composite errors both of LM method and MN method are approximately seven times higher that of MOGA calibrating model. It is suggested that the MOGA calibrating model is superior both to LM method and MN method. 展开更多
关键词 space manipulator camera calibration multi-objective genetic algorithm orbital simulation and measurement
下载PDF
A switching-based backstepping sliding mode control for space manipulator in presence of gravity variation
20
作者 Liu Fucai Zhao Wenna +1 位作者 Meng Lingcong Liu Shuo 《High Technology Letters》 EI CAS 2021年第4期454-462,共9页
A novel switching-based backstepping sliding mode control(SBSMC) scheme is devised for the space manipulator exposed to different gravity.With a view to distinct differences in dynamics properties when the operating c... A novel switching-based backstepping sliding mode control(SBSMC) scheme is devised for the space manipulator exposed to different gravity.With a view to distinct differences in dynamics properties when the operating conclition of space manipulator changer,the space manipulator can be thought of as a system composed of two subsystems,the ground subsystem and the space subsystem.Two different types of backstepping sliding mode(BSM) controllers are designed,one is suited for the ground subsystem and the other is for the space one.The switching between two subsystems can be implemented automatically when the switching mechanism is triggered,and the controllers for their subsystems experience synchronous switching.In this way,the space manipulator always has good behaviors in trajectory tracking.Moreover,multi-Lyapunov functions are introduced to prove the stability of this switching approach.According to simulation results,the method constructed in this research has better performance in control precision and adaptability compared with proportional-derivative(PD) control. 展开更多
关键词 space manipulator MICROGRAVITY switching system multi-Lyapunov functions backstepping sliding mode control(BSMC)
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部