To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were...Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were: NaOH charge 5% to 20% w/v, pulping time 30 to 180 minutes, and the anthraquinone charge 0.1 to 0.5% w/w based on the oven-dried leaves. The responses evaluated were the pulp yield, cellulose content, and the degree of delignification. Various regression models were used to evaluate the effects of varying the pulping conditions. The optimum conditions attained were;NaOH charge of 14.63%, 0.1% anthraquinone, and a pulping period of 154 minutes, corresponding to 20.68% pulp yield, 80.56% cellulose content, and 70.34% lignin removal. Analysis of variance (ANOVA), was used to determine the most important variables that improve the extraction process of cellulose. The experiment outcomes matched those predicted by the model (Predicted R2 = 0.9980, Adjusted R2 = 0.9994), demonstrating the adequacy of the model used. FTIR analysis confirmed the elimination of the non-cellulosic fiber constituents. The lignin and hemicellulose-related bands (around 1514 cm−1, 1604 cm−1, 1239 cm−1, and 1734 cm−1) decreased with chemical treatment, indicating effective cellulose extraction by the soda-anthraquinone method. Similar results were obtained by XRD, SEM and thermogravimetric analysis of the extracted cellulose. Therefore, Grevillea robusta fall leaves are suitable renewable, cost-effective, and environmentally friendly non-wood biomass for cellulose extraction.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this pap...The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.展开更多
As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbi...As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbial degumming process has many advantages.To obtain the optimal conditions for degumming ramie with Bacillus subtilis DZ_(5)(BS DZ_(5)),a combined statistical approach of orthogonal array design(OAD)and response surface methodology(RSM)was used.The influences of initial pH of the bacteria medium,culture temperature,shaking speed,degumming time and inoculum size on submerged fermentation degumming were evaluated by using fractional factorial design.The main factors in the analysis were culture temperature,shaking speed and initial pH.The residual gum mass fraction was used as the optimization index,and the optimal conditions for degumming were determined by central composite design and RSM.Thus with only a limited number of experiments,an optimal ramie microbial degumming condition was found as the culture temperature of 40℃,the initial pH in the culture medium of 8.5,the shaking speed of 205 r/min,the degumming time of 96 h and the inoculum size of 5%.After microbial degumming of ramie under the optimal conditions,there was only 10.6%residual gum by mass in the fiber.In addition,the effective degumming of BS DZ_(5)was also confirmed by a scanning electron microscope(SEM).展开更多
An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the ma...An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.展开更多
3D solid models for parts with regular-form surfaces (PRFSs) are effectively generated using traditional parametric design techniques. A new model is obtained by changing some parameters defining the model. The parts ...3D solid models for parts with regular-form surfaces (PRFSs) are effectively generated using traditional parametric design techniques. A new model is obtained by changing some parameters defining the model. The parts with free-form surfaces (PFFSs), however, cannot be defined by several parameters. Usually they are defined by some geometric elements like profile curves. The traditional parametric design approaches have not easily dealt with the PFFSs. A method for generating a solid model and an engineering drawing for PFFSs is proposed in this paper: First, the new profiles are generated from input point data. Second, the profile information is extracted from the existing model. Last, the old profiles are replaced with the new profiles. This method can preserve the associative information of the existing model and automatically generate the drawing including views, dimen- sions, and annotations. The proposed method has been implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language, and were applied to the blades of a turbine generator. Some illustrative examples are pro- vided in order to show the effectiveness of the proposed method.展开更多
A new method is put forward combining computer vision with computer aidedgeometric design (CAGD) to resolve the problem of free-form surface reconstruction. The surface isfirst subdivided into N-sided Gregory patches,...A new method is put forward combining computer vision with computer aidedgeometric design (CAGD) to resolve the problem of free-form surface reconstruction. The surface isfirst subdivided into N-sided Gregory patches, and a stereo algorithm is used to reconstruct theboundary curves. Then, the cross boundary tangent vectors are computed through reflectance analysis.At last, the whole surface can be reconstructed jointing these patches with G^1 continuity(tangentcontinuity). Examples on synthetic images are given.展开更多
Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of t...Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of technology CAD(TCAD) simulations that need to be performed.However,the errors of RSM models might be large enough to diminish the validity of the results for some nonlinear problems.To find the feasible design space,a new method with objectives-oriented design in generations that takes the errors of RSM model into account is presented.After the augment design of experiments in promising space according to the results of RSM model in current generation,the feasible space will be emerging as the model errors deceasing.The results on FIBMOS examples show that the methodology is efficient.展开更多
The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,th...The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.展开更多
The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow...The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.展开更多
The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and ...The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and the effects of these designs on tool force and power requirements were examined experimentally.Geometrical structures of the cuticle surfaces of dung beetle (Copris ochus Motschulsky) were examined by stereoscopy.The structures of the cuticle surfaces and Ultra High Mo- lecular Weight Polyethylene (UHMWPE) material were modeled on surface of tine furrow opener as biomimetic designs.Seven furrow openers were analyzed in ANSYS program (a FEM simulation software).The biomimetic furrow opener surfaces with UHMWPE structures were found to have lower equivalent pressure and pressure in the direction of motion as compared to the conventional surface and to the biomimetic surfaces with textured steel-35 structures.It was found that the tool force and power were increased with the cutting depth and operating speed and the biomimetic furrow opener with UHMWPE tubular section ridges showed the lowest resistance and power requirement against soil..展开更多
Although significant progress has been made in precision machining of free-form surfaces recently, inspection of such surfaces remains a difficult problem. In order to solve the problem that no specific standards for ...Although significant progress has been made in precision machining of free-form surfaces recently, inspection of such surfaces remains a difficult problem. In order to solve the problem that no specific standards for the verification of free-form surface profile are available, the profile parameters of free-form surface are proposed by referring to ISO standards regarding form tolerances and considering its complexity and non-rotational symmetry. Non-uniform rational basis spline(NURBS) for describing free-form surface is formulated. Crucial issues in surface inspection and profile error verification are localization between the design coordinate system(DCS) and measurement coordinate system(MCS) for searching the closest points on the design model corresponding to measured points. A quasi particle swarm optimization(QPSO) is proposed to search the transformation parameters to implement localization between DCS and MCS. Surface subdivide method which does the searching in a recursively reduced range of the parameters u and v of the NURBS design model is developed to find the closest points. In order to verify the effectiveness of the proposed methods, the design model is generated by NURBS and the measurement data of simulation example are generated by transforming the design model to arbitrary position and orientation, and the parts are machined based on the design model and are measured on CMM. The profile errors of simulation example and actual parts are calculated by the proposed method. The results verify that the evaluation precision of freeform surface profile error by the proposed method is higher 10%-22% than that by CMM software. The proposed method deals with the hard problem that it has a lower precision in profile error evaluation of free-form surface.展开更多
The aim of this paper is to investigate and optimize the preparation of scutellarin(SCU)-loaded HP-β-CD/chitosan(CS) nanoparticles(CD/CS-SCU-NPs). CD/CS-SCU-NPs were prepared by ionic cross-linking method and the pro...The aim of this paper is to investigate and optimize the preparation of scutellarin(SCU)-loaded HP-β-CD/chitosan(CS) nanoparticles(CD/CS-SCU-NPs). CD/CS-SCU-NPs were prepared by ionic cross-linking method and the process and formulation variables were optimized using response surface methodology(RSM) with a three-level, three factor Box–Behnken design(BBD).The independent variables were the added amounts of CS, sodium tripolyphosphate(TPP)and Pluronic F-68 during the preparation. Dependent variables(responses) were particle size and entrapment efficiency. Mathematical equations and respond surface plots were used to correlate independent and dependent variables.The preparation process and formulation variables were optimized to achieve minimum particle size and maximum entrapment efficiency by calculating the overall desirability value(OD). The optimized NP formulation was characterized for particle size, PDI, zeta potential, entrapment efficiency and in vitro drug release.According to the results, an optimized CD/CS-SCU-NP formulation was prepared. Results for particle size, PDI, zeta potential and entrapment efficiency were found to be around 200 nm,0.5, 25 mV, and 70% respectively. For in vitro study, the release of SCU from the NPs exhibited a biphasic release and was in accordance with Higuchi equation. The optimized preparation was simple with the probability for industrialization. The combination use of RSM, BBD and overall desirability values could provide a promising application for incorporating CD into CS nanoparticles as drug delivery carrier and help develop lab-scale procedures.展开更多
Space-deployable mechanisms can be used as supporting structures for large-diameter antennas in space engineering.This study proposes a novel method for constructing the surface design of space reflector antennas base...Space-deployable mechanisms can be used as supporting structures for large-diameter antennas in space engineering.This study proposes a novel method for constructing the surface design of space reflector antennas based on polar scissor units.The concurrency and deployability equations of the space scissor unit with definite surface constraints are derived using the rod and vector methods.Constraint equations of the spatial transformation for space n-edge polar scissor units are summarized.A new closed-loop deployable structure,called the polar scissor deployable antenna(PSDA),is designed by combining planar polar scissor units with spatial polar scissor units.The overconstrained problem is solved by releasing the curve constraint that locates at the end-point of the planar scissor mechanism.Kinematics simulation and error analysis are performed.The results show that the PSDA can effectively fit the paraboloid of revolution.Finally,deployment experiments verify the validity and feasibility of the proposed design method,which provides a new idea for the construction of large space-reflector antennas.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
Creating proper B-spline surface models is a very challenging task for designers in car-body surface design.Due to the tensor-product structure of B-spline surface,some undesirable issues of the redundant control poin...Creating proper B-spline surface models is a very challenging task for designers in car-body surface design.Due to the tensor-product structure of B-spline surface,some undesirable issues of the redundant control points addition,incomplete surface definition and the difficulty of trimming boundary alteration frequently occur,when designing the car-body surface with B-spline surfaces in local-feature-lines construction,full-boundary-merging and visual surface trimming.A more efficient approach is proposed to design the car-body surface by replacing B-spline surface with classical T-spline surface.With the local refinability and multilateral definition offered by Tspline surface,those designing issues related with B-spline surface can be overcomed.Finally,modeling examples of the door,hood and rear-window are given to demonstrate the advantage of T-spline surface over B-spline surface in car-body surface design.展开更多
An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used...An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used for transonic wing design and subsonic multi-lifting surface design. The up-wind scheme is introduced into governing equations of multi-lifting surface design method and automatically acted when supersonic flow appears on the surface. A series of interface codes are programmed, including a target-pressure modification tool. Using the improved inverse aerodynamic design code, TAU code and interface codes, the transonic multi-lifting aerodynamic design software system is founded. Two cases of canard-wing configuration have been performed to validate the method and codes. The results show that the convergence of analysis/design iteration is very good at higher speed transonic flow.展开更多
Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simpli...Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression(SVR) metamodel is combined with the Monte Carlo simulation(MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.展开更多
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
文摘Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were: NaOH charge 5% to 20% w/v, pulping time 30 to 180 minutes, and the anthraquinone charge 0.1 to 0.5% w/w based on the oven-dried leaves. The responses evaluated were the pulp yield, cellulose content, and the degree of delignification. Various regression models were used to evaluate the effects of varying the pulping conditions. The optimum conditions attained were;NaOH charge of 14.63%, 0.1% anthraquinone, and a pulping period of 154 minutes, corresponding to 20.68% pulp yield, 80.56% cellulose content, and 70.34% lignin removal. Analysis of variance (ANOVA), was used to determine the most important variables that improve the extraction process of cellulose. The experiment outcomes matched those predicted by the model (Predicted R2 = 0.9980, Adjusted R2 = 0.9994), demonstrating the adequacy of the model used. FTIR analysis confirmed the elimination of the non-cellulosic fiber constituents. The lignin and hemicellulose-related bands (around 1514 cm−1, 1604 cm−1, 1239 cm−1, and 1734 cm−1) decreased with chemical treatment, indicating effective cellulose extraction by the soda-anthraquinone method. Similar results were obtained by XRD, SEM and thermogravimetric analysis of the extracted cellulose. Therefore, Grevillea robusta fall leaves are suitable renewable, cost-effective, and environmentally friendly non-wood biomass for cellulose extraction.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金supported by the National Natural Science Foundation of China(Nos.12002031,12122202U22B2083)+1 种基金the China Postdoctoral Science Foundation(Nos.BX2021038 and 2021M700428)the National Key Research and Development of China(No.2022YFB4601901)。
文摘The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.
基金National Natural Science Foundation of China(No.51863020)。
文摘As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbial degumming process has many advantages.To obtain the optimal conditions for degumming ramie with Bacillus subtilis DZ_(5)(BS DZ_(5)),a combined statistical approach of orthogonal array design(OAD)and response surface methodology(RSM)was used.The influences of initial pH of the bacteria medium,culture temperature,shaking speed,degumming time and inoculum size on submerged fermentation degumming were evaluated by using fractional factorial design.The main factors in the analysis were culture temperature,shaking speed and initial pH.The residual gum mass fraction was used as the optimization index,and the optimal conditions for degumming were determined by central composite design and RSM.Thus with only a limited number of experiments,an optimal ramie microbial degumming condition was found as the culture temperature of 40℃,the initial pH in the culture medium of 8.5,the shaking speed of 205 r/min,the degumming time of 96 h and the inoculum size of 5%.After microbial degumming of ramie under the optimal conditions,there was only 10.6%residual gum by mass in the fiber.In addition,the effective degumming of BS DZ_(5)was also confirmed by a scanning electron microscope(SEM).
基金Project(51378457)supported by the National Natural Science Foundation of China
文摘An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.
文摘3D solid models for parts with regular-form surfaces (PRFSs) are effectively generated using traditional parametric design techniques. A new model is obtained by changing some parameters defining the model. The parts with free-form surfaces (PFFSs), however, cannot be defined by several parameters. Usually they are defined by some geometric elements like profile curves. The traditional parametric design approaches have not easily dealt with the PFFSs. A method for generating a solid model and an engineering drawing for PFFSs is proposed in this paper: First, the new profiles are generated from input point data. Second, the profile information is extracted from the existing model. Last, the old profiles are replaced with the new profiles. This method can preserve the associative information of the existing model and automatically generate the drawing including views, dimen- sions, and annotations. The proposed method has been implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language, and were applied to the blades of a turbine generator. Some illustrative examples are pro- vided in order to show the effectiveness of the proposed method.
基金National Natural Science Foundation of China(No.59975057).
文摘A new method is put forward combining computer vision with computer aidedgeometric design (CAGD) to resolve the problem of free-form surface reconstruction. The surface isfirst subdivided into N-sided Gregory patches, and a stereo algorithm is used to reconstruct theboundary curves. Then, the cross boundary tangent vectors are computed through reflectance analysis.At last, the whole surface can be reconstructed jointing these patches with G^1 continuity(tangentcontinuity). Examples on synthetic images are given.
文摘Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of technology CAD(TCAD) simulations that need to be performed.However,the errors of RSM models might be large enough to diminish the validity of the results for some nonlinear problems.To find the feasible design space,a new method with objectives-oriented design in generations that takes the errors of RSM model into account is presented.After the augment design of experiments in promising space according to the results of RSM model in current generation,the feasible space will be emerging as the model errors deceasing.The results on FIBMOS examples show that the methodology is efficient.
基金supported by the National Natural Science Foundation of China(Grant Nos.51874110 and 51604089)Natural Science Foundation of Heilongjiang Province(YQ2021B004)Open Project of State Key Laboratory of Urban Water Resource and Environment(Grant No.QA202138).
文摘The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.
文摘The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.
基金supported by the National Natural Science Foundation of China (Grant no. 50675087 and Grant no. 50635030)the National Hi-tech Project (863 Project) (Grant no. SQ2008AA04ZX1478650)+3 种基金the Key Project of Science and Technology Research of Ministry of Education of China (Grant no. 106061)the National Key Technologies R&D Program (Grant no. 2006BAD11A08)the National Science Fund for Distinguished Young Scholars of China (Grant no. 50025516)the "985 Project" of Jilin University.
文摘The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and the effects of these designs on tool force and power requirements were examined experimentally.Geometrical structures of the cuticle surfaces of dung beetle (Copris ochus Motschulsky) were examined by stereoscopy.The structures of the cuticle surfaces and Ultra High Mo- lecular Weight Polyethylene (UHMWPE) material were modeled on surface of tine furrow opener as biomimetic designs.Seven furrow openers were analyzed in ANSYS program (a FEM simulation software).The biomimetic furrow opener surfaces with UHMWPE structures were found to have lower equivalent pressure and pressure in the direction of motion as compared to the conventional surface and to the biomimetic surfaces with textured steel-35 structures.It was found that the tool force and power were increased with the cutting depth and operating speed and the biomimetic furrow opener with UHMWPE tubular section ridges showed the lowest resistance and power requirement against soil..
基金supported by National Natural Science Foundation of China(Grant No. 51075198)Jiangsu Provincial Natural Science Foundation of China(Grant No. BK2010479)+1 种基金Jiangsu Provincial Project of 333 Talents Engineering of ChinaJiangsu Provincial Project of Six Talented Peak of China
文摘Although significant progress has been made in precision machining of free-form surfaces recently, inspection of such surfaces remains a difficult problem. In order to solve the problem that no specific standards for the verification of free-form surface profile are available, the profile parameters of free-form surface are proposed by referring to ISO standards regarding form tolerances and considering its complexity and non-rotational symmetry. Non-uniform rational basis spline(NURBS) for describing free-form surface is formulated. Crucial issues in surface inspection and profile error verification are localization between the design coordinate system(DCS) and measurement coordinate system(MCS) for searching the closest points on the design model corresponding to measured points. A quasi particle swarm optimization(QPSO) is proposed to search the transformation parameters to implement localization between DCS and MCS. Surface subdivide method which does the searching in a recursively reduced range of the parameters u and v of the NURBS design model is developed to find the closest points. In order to verify the effectiveness of the proposed methods, the design model is generated by NURBS and the measurement data of simulation example are generated by transforming the design model to arbitrary position and orientation, and the parts are machined based on the design model and are measured on CMM. The profile errors of simulation example and actual parts are calculated by the proposed method. The results verify that the evaluation precision of freeform surface profile error by the proposed method is higher 10%-22% than that by CMM software. The proposed method deals with the hard problem that it has a lower precision in profile error evaluation of free-form surface.
基金supported by the Academic Research Fund,Faculty of Science,National University of Singapore,R148-000-180-112
文摘The aim of this paper is to investigate and optimize the preparation of scutellarin(SCU)-loaded HP-β-CD/chitosan(CS) nanoparticles(CD/CS-SCU-NPs). CD/CS-SCU-NPs were prepared by ionic cross-linking method and the process and formulation variables were optimized using response surface methodology(RSM) with a three-level, three factor Box–Behnken design(BBD).The independent variables were the added amounts of CS, sodium tripolyphosphate(TPP)and Pluronic F-68 during the preparation. Dependent variables(responses) were particle size and entrapment efficiency. Mathematical equations and respond surface plots were used to correlate independent and dependent variables.The preparation process and formulation variables were optimized to achieve minimum particle size and maximum entrapment efficiency by calculating the overall desirability value(OD). The optimized NP formulation was characterized for particle size, PDI, zeta potential, entrapment efficiency and in vitro drug release.According to the results, an optimized CD/CS-SCU-NP formulation was prepared. Results for particle size, PDI, zeta potential and entrapment efficiency were found to be around 200 nm,0.5, 25 mV, and 70% respectively. For in vitro study, the release of SCU from the NPs exhibited a biphasic release and was in accordance with Higuchi equation. The optimized preparation was simple with the probability for industrialization. The combination use of RSM, BBD and overall desirability values could provide a promising application for incorporating CD into CS nanoparticles as drug delivery carrier and help develop lab-scale procedures.
基金Supported by National Key R&D Program of China(Grant No.2018YFB1304600)National Natural Science Foundation of China(Grant No.51775541)+1 种基金CAS Interdisciplinary Innovation Team of China(Grant No.JCTD-2018-11)Hundred-Talent Program(Chinese Academy of Sciences)(Grant No.Y8A3210304).
文摘Space-deployable mechanisms can be used as supporting structures for large-diameter antennas in space engineering.This study proposes a novel method for constructing the surface design of space reflector antennas based on polar scissor units.The concurrency and deployability equations of the space scissor unit with definite surface constraints are derived using the rod and vector methods.Constraint equations of the spatial transformation for space n-edge polar scissor units are summarized.A new closed-loop deployable structure,called the polar scissor deployable antenna(PSDA),is designed by combining planar polar scissor units with spatial polar scissor units.The overconstrained problem is solved by releasing the curve constraint that locates at the end-point of the planar scissor mechanism.Kinematics simulation and error analysis are performed.The results show that the PSDA can effectively fit the paraboloid of revolution.Finally,deployment experiments verify the validity and feasibility of the proposed design method,which provides a new idea for the construction of large space-reflector antennas.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
文摘Creating proper B-spline surface models is a very challenging task for designers in car-body surface design.Due to the tensor-product structure of B-spline surface,some undesirable issues of the redundant control points addition,incomplete surface definition and the difficulty of trimming boundary alteration frequently occur,when designing the car-body surface with B-spline surfaces in local-feature-lines construction,full-boundary-merging and visual surface trimming.A more efficient approach is proposed to design the car-body surface by replacing B-spline surface with classical T-spline surface.With the local refinability and multilateral definition offered by Tspline surface,those designing issues related with B-spline surface can be overcomed.Finally,modeling examples of the door,hood and rear-window are given to demonstrate the advantage of T-spline surface over B-spline surface in car-body surface design.
文摘An aerodynamic design method and corresponding codes are developed for three-dimensional multi lifting surfaces at transonic flow. It is based on the "iterative residual correction" concept that is successfully used for transonic wing design and subsonic multi-lifting surface design. The up-wind scheme is introduced into governing equations of multi-lifting surface design method and automatically acted when supersonic flow appears on the surface. A series of interface codes are programmed, including a target-pressure modification tool. Using the improved inverse aerodynamic design code, TAU code and interface codes, the transonic multi-lifting aerodynamic design software system is founded. Two cases of canard-wing configuration have been performed to validate the method and codes. The results show that the convergence of analysis/design iteration is very good at higher speed transonic flow.
基金Supported by National Natural Science Foundation of China(Grant No.51406148)National Science Technology Support Program of China(Grant No.2012BAA08B06)Postdoctoral Scientific Foundation of China(Grant No.2014M552444)
文摘Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression(SVR) metamodel is combined with the Monte Carlo simulation(MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.