Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a ...Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a few linear a-olefins(e.g.,1-butene,1-hexene,and 1-octene)are used as comonomers in solution polymerization in industry.However,a-olefin comonomers with other structures may have different effects on polymerization in comparison with common linear ones.Moreover,the properties of the corresponding materials may differ significantly.In this work,copolymers of ethylene with linear and endcyclized a-olefins are synthesized using a metallocene catalyst.The copolymerization of ethylene with linear a-olefins results in a higher turn-over frequency(TOF)and lower incorporation than copolymerization with end-cyclized a-olefins,which may indicate that end-cyclized a-olefins have a higher coordination probability and lower insertion rate.In this reaction,the comonomer is distributed randomly in the polymer chain and efficiently destroys crystallization.End-cyclized a-olefins exhibit a much stronger crystallization destructive capacity(CDC)in the copolymer than linear a-olefins,possibly because linear a-olefins act mainly in the radial direction of the main chain of the polymer,while end-cyclized a-olefins act mainly in the axial direction of the main chain.展开更多
Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr...Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copo...Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.展开更多
Bonded type RE3+ doped luminescent co-polymer was synthesized by solution free radical copolymerization. The influence of charge sequence, monomers and co-polymerized method on properties and structures of the co-poly...Bonded type RE3+ doped luminescent co-polymer was synthesized by solution free radical copolymerization. The influence of charge sequence, monomers and co-polymerized method on properties and structures of the co-polymers was studied. The emission intensity of the co-polymers at different RE3+ concentrations was tested. The results showed that the co-polymers of Eu-PSt and Eu-PMMA both had wide absorption peak at 200-400 nm and the strongest peak appeared at 235 nm. The fluorescent intensity of Eu3+ doped polystyrene co-polymer was stronger than that of Eu3+ doped PMMA copolymer. The characteristic emission of europium ions was observed in the co-polymers. The copolymer doped with rare earth elements showed the 'sensitization effect' for the central ions. The bonded-type rare earth copolymer not only enhanced the energy transfer efficiency, but also improved the fluorescence intensity by increasing the rigidity of main and side chain.展开更多
Miniemulsion copolymerization of butyl mathacrylate (BMA) with fluoroacrylate (HFMA, TFMA) was carried out at 70 ℃ by employing potassium persulphate (KPS) as initiator. Copolymer compositions at low conversion...Miniemulsion copolymerization of butyl mathacrylate (BMA) with fluoroacrylate (HFMA, TFMA) was carried out at 70 ℃ by employing potassium persulphate (KPS) as initiator. Copolymer compositions at low conversion levels were determined by ^1H NMR spectra techniques. The reactivity ratios were evaluated by employing Kellen-Tudos (K-T) methods, which yields the apparent reactivity ratios, rBMA = 0.74, rHFMA = 0.87 and rBMA = 0.73, rTFMA = 0.75, respectively, and Q- and e-values of HFMA and TFMA were calculated by the Alfrey-Price method. The results show that HFMA and TFMA are more active than BMA, and the cross-propagation rate constant is greater than the self-propagation one in these two copolymerizations.展开更多
In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentratio...In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.展开更多
Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-bu...Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-butyl)zinc, di(i-propyl)zinc, di(i-butyl)zinc, di(s-butyl)zinc,respectively. The Y(CCl3COO)3-ZnR2-glycerin catalysts displayed the highest catalytic activity at the molar ratio of Y(CCl3COO)3:ZnR2:glycerin = 1:20:10. In the same copolymerization condition, catalysts containing dialkylzincs with branched alkyl group showed lower catalytic activity than that with primary alkyl group. For those catalysts including dialkylzincs with primary alkyl group, their catalytic activity decreases with increasing number of carbon atom in the alkyl group with the following sequence: Y(CCl3COO)3-ZnEt2-glycerin 〉 Y(CCl3COO)3-Zn(n- Pr)2-glycerin〉Y(CCl3COO)3-Zn(n-Bu)2-glycerin. However, the alkyl group in the dialkylzinc does not influence the insertion of PO into the propagation chain end.展开更多
Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were c...Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were characterized by an array of techniques including NMR,GPC,TEM,WAXD and DSC.The results indicate that the copolymers obtained are mostly block copolymers of polyethylene with random insertion of styrene units,and their M_W is in the range of 10~5-10~6.By enhancing the electron withdrawing of the s...展开更多
Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an al...Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.展开更多
The monodispersed polymeric particles with an unusual structure were prepared by the dispersion copolymerization of acrylonitrile/styrene(AN/St) in mixed solvents of ethanol/water by using the poly(N-isopropylacryl...The monodispersed polymeric particles with an unusual structure were prepared by the dispersion copolymerization of acrylonitrile/styrene(AN/St) in mixed solvents of ethanol/water by using the poly(N-isopropylacrylamide) (PNIPAAm) macromonomer as a reaction stabilizer. It was found that the AN monomer plays a key role in the formation of the particles with special morphology analyzed via scanning electron microscopy (SEM). The reaction parameters have remarkable influences on the particle size and morphology. The particles possess a thermosensitive property according to the result of laser light scattering(LLS).展开更多
i-PP/m-EPR reactor alloy were prepared through ethylene/propylene slurry copolymerization catalyzed by metallocene(rac-Et(Ind)_2ZrCl_2)supported on porous iPP particles.Polar monomer(dihydromyrcene alcohol)treated wit...i-PP/m-EPR reactor alloy were prepared through ethylene/propylene slurry copolymerization catalyzed by metallocene(rac-Et(Ind)_2ZrCl_2)supported on porous iPP particles.Polar monomer(dihydromyrcene alcohol)treated with triethyaluminum was added in the preparation of porous iPP particles to introduce hydroxyl groups and thus enhance the ability for chemically supporting the metallocene catalyst.The effects of MAO/Zr ratio and monomer composition in feed on the reaction activity and property of polymer were i...展开更多
2,2,3,3,4,4,5,5-Octafluoropentyl acrylate was grafted onto silk fiber in a two-step heterogeneous system through the vinyl bonds of acryloyloxyethyl isocyanate modified on the silk.The grafted copolylner was analyzed ...2,2,3,3,4,4,5,5-Octafluoropentyl acrylate was grafted onto silk fiber in a two-step heterogeneous system through the vinyl bonds of acryloyloxyethyl isocyanate modified on the silk.The grafted copolylner was analyzed by FTIR and WAXD,and the results revealed that the fluoroacrylate was successfully grafted onto silk fiber and the crystalline structure of silk fibroin withβ-sheet structure was not changed after graft copolymerization.The FT-IR corrected method was used to simulate the grafting yield onto sil...展开更多
FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-bas...FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-based catalyst in hexane. The relationship between the signal intensity of monomer and its concentration was investigated. The kinetic study of copolymerization of Bd and Ip was further conducted, and the monomer reactivity ratios were determined via in situ ATR FTIR. The signal band at 1010 cm^-1 was assigned to wagging vibration of Bd and its intensity was proportional to Bd concentration ([Bd]) in the range of 0.46-3.88 mol.L^-1. The signal bands at 890 and 989 cm^-1 were assigned to wagging vibration of Ip and the signal intensity was also proportional to Ip concentration ([Ip]) in the range of 0.08-4.73 mol·L^-1 at 890 cm^-1 and 0.08-7.49 mol·L^-1 at 989 cm^-1, respectively. Thus the signal band at 1010 cm^-1 was chosen to monitor Bd concentration and bands at 989 and 890 cm^-1 to monitor Ip concentration during the copolymerization, respectively. It was demonstrated that the conversions of Bd and Ip calculated from FTIR data agreed very well with those obtained gravimetrically. The poiymerization rates were first order with respect to both [Bd] and [Ip], respectively at different polymerization temperatures. The apparent propagation activation energy for Bd and Ip could be determined to be 54.4 kJ·mol^-1 and 57.7 kJ·mol^-1, respectively. The monomer reactivity ratios were calculated to be 1.08 for Bd (rBd) and 0.48 for IP (rIp) based on FTIR data. The Bd-Ip copolymer products with random sequence could be obtained with only one glass transition temperature.展开更多
Lignin isolated from enzymatic hydrolyzed corn-stalks (EH-lignin) is a renewable natural polymer noted for its versatility and applicability in a vari-ety of uses. Graft copolymerization of EH-lignin with acrylamide (...Lignin isolated from enzymatic hydrolyzed corn-stalks (EH-lignin) is a renewable natural polymer noted for its versatility and applicability in a vari-ety of uses. Graft copolymerization of EH-lignin with acrylamide (AM) and the application of this copolymer as a flocculant in dye wastewater treatment were studied in this article. The influ-ences of some factors on yield of copolymer and the grafting ratio were investigated and the structure of EH-lignin/AM graft copolymer was characterized by FT-IR. According to the yield and the grafting ratio, the optimum conditions for graft copolymerization were as follows: initiator K2S2O8-Na2S2O3 with a quantity 3 wt% of EH-lignin, mass ratio of AM to EH-lignin was 2~3, reaction time 4h and temperature at 50℃. It was found that the absorption capacity of graft copolymer to two azo-dyes was enhanced with the increase of grafting ratio. Furthermore, the residue concen-tration of EH-lignin/AM graft copolymer remained in the supernatant after flocculation was much lower than that of pure EH-lignin.展开更多
The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, suc...The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, macromolecular carder (PSAA), and ratio of styrene to 4-vinypyridine (g/g), on the copolymerization yield of styrene and 4-Vinylpyridine was investigated. The results showed that the copolymerization of polar monomers with olefins occurred efficiently and the catalytic activity of polymer-supported catalyst was higher than that of the similar small molecular catalysts. The activity of PSAA.Nd complex increased with in- creasing Al/Nd molar ratios and decreased with increasing polymerization time. The highest activity of PSAA'Nd was observed at 120 min, and the highest yield was found at the ratio of styrene to 4-vinylpyridine of 4:2. DSC analysis presented that the resulted polymer had only one glass transition temperature, and showed very good thermal stability.展开更多
The graft copolymerization of acrylic acid (AA) with unswollen and swollen ramie fibers using chromic acid (H 2CrO 4) as the initiator has been studied in the presence of air. The effects of initiator concentration,...The graft copolymerization of acrylic acid (AA) with unswollen and swollen ramie fibers using chromic acid (H 2CrO 4) as the initiator has been studied in the presence of air. The effects of initiator concentration, monomer concentration, perchloric acid (HClO 4) concentration, time of polymerization, reaction temperature, and amount of ramie fibers on the graft percentage have been found out. The graft copolymer was characterized by IR spectra, scanning electron microscopy(SEM), differential thermal analysis (DTA), and thermogravimertric analysis (TGA).展开更多
Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were stu...Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.展开更多
Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ ...Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.展开更多
A phosphorus-containing monomer (lO-oxo-10-hydro-9-oxa-10λ^5-phosphaphenanthrene-10-yl)-methyl acrylate (MD was copolymerized with styrene to give a potential flame retardant copolymer of high thermal stability. T...A phosphorus-containing monomer (lO-oxo-10-hydro-9-oxa-10λ^5-phosphaphenanthrene-10-yl)-methyl acrylate (MD was copolymerized with styrene to give a potential flame retardant copolymer of high thermal stability. The structures of monomer and copolymer were characterized by FT-IR and ^1H NMR measurements. The reactivity ratios for free-radical of the monomer (M1) and styrene (Mz) were studied. The calculated results are as follows: r1 = 0.225, r2 = 0.503; Q1 = 0.413, e1 = 0.476; azeotropic point = 0.37. TGA and DTG curves indicated that Ml is a potential flame retarding monomer for styrenic polymers. C 2009 Yu Bin Zheng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
文摘Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a few linear a-olefins(e.g.,1-butene,1-hexene,and 1-octene)are used as comonomers in solution polymerization in industry.However,a-olefin comonomers with other structures may have different effects on polymerization in comparison with common linear ones.Moreover,the properties of the corresponding materials may differ significantly.In this work,copolymers of ethylene with linear and endcyclized a-olefins are synthesized using a metallocene catalyst.The copolymerization of ethylene with linear a-olefins results in a higher turn-over frequency(TOF)and lower incorporation than copolymerization with end-cyclized a-olefins,which may indicate that end-cyclized a-olefins have a higher coordination probability and lower insertion rate.In this reaction,the comonomer is distributed randomly in the polymer chain and efficiently destroys crystallization.End-cyclized a-olefins exhibit a much stronger crystallization destructive capacity(CDC)in the copolymer than linear a-olefins,possibly because linear a-olefins act mainly in the radial direction of the main chain of the polymer,while end-cyclized a-olefins act mainly in the axial direction of the main chain.
基金supported by the National Natural Science Foundation of China(Project Nos.51774062 and 52274032)Scientific and Technological Key Research Program of Chongqing Municipal Education Commission(KJZD-K201901502)+1 种基金General Project of Chongqing Natural Science Foundation(CSTB2022NSCQMSX0349)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202313101)。
文摘Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
文摘Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.
基金Project supported by the Special Funds for Major State Research Projectsthe National Natural Science Foundation of China (50373034)
文摘Bonded type RE3+ doped luminescent co-polymer was synthesized by solution free radical copolymerization. The influence of charge sequence, monomers and co-polymerized method on properties and structures of the co-polymers was studied. The emission intensity of the co-polymers at different RE3+ concentrations was tested. The results showed that the co-polymers of Eu-PSt and Eu-PMMA both had wide absorption peak at 200-400 nm and the strongest peak appeared at 235 nm. The fluorescent intensity of Eu3+ doped polystyrene co-polymer was stronger than that of Eu3+ doped PMMA copolymer. The characteristic emission of europium ions was observed in the co-polymers. The copolymer doped with rare earth elements showed the 'sensitization effect' for the central ions. The bonded-type rare earth copolymer not only enhanced the energy transfer efficiency, but also improved the fluorescence intensity by increasing the rigidity of main and side chain.
基金supported by National Natural Science Foundation of China(Nos.20576117 and 20806067)China Postdoctoral Science Foundation(No.20070420230).
文摘Miniemulsion copolymerization of butyl mathacrylate (BMA) with fluoroacrylate (HFMA, TFMA) was carried out at 70 ℃ by employing potassium persulphate (KPS) as initiator. Copolymer compositions at low conversion levels were determined by ^1H NMR spectra techniques. The reactivity ratios were evaluated by employing Kellen-Tudos (K-T) methods, which yields the apparent reactivity ratios, rBMA = 0.74, rHFMA = 0.87 and rBMA = 0.73, rTFMA = 0.75, respectively, and Q- and e-values of HFMA and TFMA were calculated by the Alfrey-Price method. The results show that HFMA and TFMA are more active than BMA, and the cross-propagation rate constant is greater than the self-propagation one in these two copolymerizations.
文摘In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20025414 and 50003009).
文摘Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-butyl)zinc, di(i-propyl)zinc, di(i-butyl)zinc, di(s-butyl)zinc,respectively. The Y(CCl3COO)3-ZnR2-glycerin catalysts displayed the highest catalytic activity at the molar ratio of Y(CCl3COO)3:ZnR2:glycerin = 1:20:10. In the same copolymerization condition, catalysts containing dialkylzincs with branched alkyl group showed lower catalytic activity than that with primary alkyl group. For those catalysts including dialkylzincs with primary alkyl group, their catalytic activity decreases with increasing number of carbon atom in the alkyl group with the following sequence: Y(CCl3COO)3-ZnEt2-glycerin 〉 Y(CCl3COO)3-Zn(n- Pr)2-glycerin〉Y(CCl3COO)3-Zn(n-Bu)2-glycerin. However, the alkyl group in the dialkylzinc does not influence the insertion of PO into the propagation chain end.
文摘Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were characterized by an array of techniques including NMR,GPC,TEM,WAXD and DSC.The results indicate that the copolymers obtained are mostly block copolymers of polyethylene with random insertion of styrene units,and their M_W is in the range of 10~5-10~6.By enhancing the electron withdrawing of the s...
基金This project was supported by the National Natural Science Foundation of China. (No.29974024,20254001)
文摘Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.
文摘The monodispersed polymeric particles with an unusual structure were prepared by the dispersion copolymerization of acrylonitrile/styrene(AN/St) in mixed solvents of ethanol/water by using the poly(N-isopropylacrylamide) (PNIPAAm) macromonomer as a reaction stabilizer. It was found that the AN monomer plays a key role in the formation of the particles with special morphology analyzed via scanning electron microscopy (SEM). The reaction parameters have remarkable influences on the particle size and morphology. The particles possess a thermosensitive property according to the result of laser light scattering(LLS).
基金National Basic Research Program of China(No.2005CB623804)the National Natural Science Foundation of China(No.20476090).
文摘i-PP/m-EPR reactor alloy were prepared through ethylene/propylene slurry copolymerization catalyzed by metallocene(rac-Et(Ind)_2ZrCl_2)supported on porous iPP particles.Polar monomer(dihydromyrcene alcohol)treated with triethyaluminum was added in the preparation of porous iPP particles to introduce hydroxyl groups and thus enhance the ability for chemically supporting the metallocene catalyst.The effects of MAO/Zr ratio and monomer composition in feed on the reaction activity and property of polymer were i...
基金the National Natural Science Foundation of China (No.50673071).
文摘2,2,3,3,4,4,5,5-Octafluoropentyl acrylate was grafted onto silk fiber in a two-step heterogeneous system through the vinyl bonds of acryloyloxyethyl isocyanate modified on the silk.The grafted copolylner was analyzed by FTIR and WAXD,and the results revealed that the fluoroacrylate was successfully grafted onto silk fiber and the crystalline structure of silk fibroin withβ-sheet structure was not changed after graft copolymerization.The FT-IR corrected method was used to simulate the grafting yield onto sil...
基金supported by the National 863 program(No.2006AA03Z552)the National Natural Science Foundation of China(No.50903003)China Petroleum Chemical Corp.(SINOPEC)and Program for Changjiang Scholars and Innovative Research Teams in Universities(IRT0706)
文摘FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe was utilized to study in situ the copolymerization of butadiene (Bd) and isoprene (Ip) with neodymium-based catalyst in hexane. The relationship between the signal intensity of monomer and its concentration was investigated. The kinetic study of copolymerization of Bd and Ip was further conducted, and the monomer reactivity ratios were determined via in situ ATR FTIR. The signal band at 1010 cm^-1 was assigned to wagging vibration of Bd and its intensity was proportional to Bd concentration ([Bd]) in the range of 0.46-3.88 mol.L^-1. The signal bands at 890 and 989 cm^-1 were assigned to wagging vibration of Ip and the signal intensity was also proportional to Ip concentration ([Ip]) in the range of 0.08-4.73 mol·L^-1 at 890 cm^-1 and 0.08-7.49 mol·L^-1 at 989 cm^-1, respectively. Thus the signal band at 1010 cm^-1 was chosen to monitor Bd concentration and bands at 989 and 890 cm^-1 to monitor Ip concentration during the copolymerization, respectively. It was demonstrated that the conversions of Bd and Ip calculated from FTIR data agreed very well with those obtained gravimetrically. The poiymerization rates were first order with respect to both [Bd] and [Ip], respectively at different polymerization temperatures. The apparent propagation activation energy for Bd and Ip could be determined to be 54.4 kJ·mol^-1 and 57.7 kJ·mol^-1, respectively. The monomer reactivity ratios were calculated to be 1.08 for Bd (rBd) and 0.48 for IP (rIp) based on FTIR data. The Bd-Ip copolymer products with random sequence could be obtained with only one glass transition temperature.
文摘Lignin isolated from enzymatic hydrolyzed corn-stalks (EH-lignin) is a renewable natural polymer noted for its versatility and applicability in a vari-ety of uses. Graft copolymerization of EH-lignin with acrylamide (AM) and the application of this copolymer as a flocculant in dye wastewater treatment were studied in this article. The influ-ences of some factors on yield of copolymer and the grafting ratio were investigated and the structure of EH-lignin/AM graft copolymer was characterized by FT-IR. According to the yield and the grafting ratio, the optimum conditions for graft copolymerization were as follows: initiator K2S2O8-Na2S2O3 with a quantity 3 wt% of EH-lignin, mass ratio of AM to EH-lignin was 2~3, reaction time 4h and temperature at 50℃. It was found that the absorption capacity of graft copolymer to two azo-dyes was enhanced with the increase of grafting ratio. Furthermore, the residue concen-tration of EH-lignin/AM graft copolymer remained in the supernatant after flocculation was much lower than that of pure EH-lignin.
基金Science Technology Foundation of Jilin Province (200223)
文摘The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, macromolecular carder (PSAA), and ratio of styrene to 4-vinypyridine (g/g), on the copolymerization yield of styrene and 4-Vinylpyridine was investigated. The results showed that the copolymerization of polar monomers with olefins occurred efficiently and the catalytic activity of polymer-supported catalyst was higher than that of the similar small molecular catalysts. The activity of PSAA.Nd complex increased with in- creasing Al/Nd molar ratios and decreased with increasing polymerization time. The highest activity of PSAA'Nd was observed at 120 min, and the highest yield was found at the ratio of styrene to 4-vinylpyridine of 4:2. DSC analysis presented that the resulted polymer had only one glass transition temperature, and showed very good thermal stability.
文摘The graft copolymerization of acrylic acid (AA) with unswollen and swollen ramie fibers using chromic acid (H 2CrO 4) as the initiator has been studied in the presence of air. The effects of initiator concentration, monomer concentration, perchloric acid (HClO 4) concentration, time of polymerization, reaction temperature, and amount of ramie fibers on the graft percentage have been found out. The graft copolymer was characterized by IR spectra, scanning electron microscopy(SEM), differential thermal analysis (DTA), and thermogravimertric analysis (TGA).
文摘Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.
文摘Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.
文摘A phosphorus-containing monomer (lO-oxo-10-hydro-9-oxa-10λ^5-phosphaphenanthrene-10-yl)-methyl acrylate (MD was copolymerized with styrene to give a potential flame retardant copolymer of high thermal stability. The structures of monomer and copolymer were characterized by FT-IR and ^1H NMR measurements. The reactivity ratios for free-radical of the monomer (M1) and styrene (Mz) were studied. The calculated results are as follows: r1 = 0.225, r2 = 0.503; Q1 = 0.413, e1 = 0.476; azeotropic point = 0.37. TGA and DTG curves indicated that Ml is a potential flame retarding monomer for styrenic polymers. C 2009 Yu Bin Zheng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.