A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achievin...A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.展开更多
BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentu...BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentuating diabetic complications.An inflammatory link exists between diabetic retinopathy(DR)and periodontitis,but the studies regarding this association and the role of lipoprotein(a)[Lp(a)]and interleukin-6(IL-6)in these conditions are scarce in the literature.AIM To determine the correlation of periodontal inflamed surface area(PISA)with glycated Hb(HbA1c),serum IL-6 and Lp(a)in T2DM subjects with retinopathy.METHODS This cross-sectional study comprised 40 T2DM subjects with DR and 40 T2DM subjects without DR.All subjects were assessed for periodontal parameters[bleeding on probing(BOP),probing pocket depth,clinical attachment loss(CAL),oral hygiene index-simplified,plaque index(PI)and PISA],and systemic parameters[HbA1c,fasting plasma glucose and postprandial plasma glucose,fasting lipid profile,serum IL-6 and serum Lp(a)].RESULTS The proportion of periodontitis in T2DM with and without DR was 47.5%and 27.5%respectively.Severity of periodontitis,CAL,PISA,IL-6 and Lp(a)were higher in T2DM with DR group compared to T2DM without DR group.Significant difference was observed in the mean percentage of sites with BOP between T2DM with DR(69%)and T2DM without DR(41%),but there was no significant difference in PI(P>0.05).HbA1c was positively correlated with CAL(r=0.351,P=0.001),and PISA(r=0.393,P≤0.001)in study subjects.A positive correlation was found between PISA and IL-6(r=0.651,P<0.0001);PISA and Lp(a)(r=0.59,P<0.001);CAL and IL-6(r=0.527,P<0.0001)and CAL and Lp(a)(r=0.631,P<0.001)among study subjects.CONCLUSION Despite both groups having poor glycemic control and comparable plaque scores,the periodontal parameters were higher in DR as compared to T2DM without DR.Since a bidirectional link exists between periodontitis and DM,the presence of DR may have contributed to the severity of periodontal destruction and periodontitis may have influenced the progression of DR.展开更多
This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(V...This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.展开更多
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es...At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.展开更多
The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enou...The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enough yet thus making the need for ambitious research to be carried out. Previous study only included 81 species of orchids within ACA. This study aims to update the record of species and genera richness in the ACA. In total 198 species of orchids, belonging to 67 genera (40% and 62% of the total recorded orchid species and genera in Nepal) has been recorded in ACA. This represents an increase of 144% in species and 56% in genera over the previous data. Out of the 198 species, 99 were epiphytes, 6 were holomycotrophic and 93 were terrestrial. Among the 67 genera, Bulbophyllum (17) species were dominant, followed by Dendrobium (16), Herminium (10), Coelogyne, Plantanthera (9 each), Eria, Habenaria, Oberonia (8 each), Calanthe (7), and Liparis (6). Fifty-six species were found to be ornamentally significant and 85 species medicinally significant.展开更多
Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was propose...Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was proposed and applied to determine the basic environmental characteristics of the best mussel and large yellow croaker aquaculture areas.This methodology includes the first step of extraction of the location distribution and the second step of the extraction of internal environmental factors.The fishery ranching index(FRI1,FRI2)was established to extract the mussel and the large yellow croaker aquaculture area in Zhoushan,using Gaofen-1(GF-1)and Gaofen-6(GF-6)satellite data with a special resolution of 2 m.In the second step,the environmental factors such as sea surface temperature(SST),chlorophyll a(Chl-a)concentration,current and tide,suspended sediment concentration(SSC)in mussel aquaculture area and large yellow croaker aquaculture area were extracted and analyzed in detail.The results show the following three points.(1)For the extraction of the mussel aquaculture area,FRI1 and FRI2 are complementary,and the combination of FRI1 and FRI2 is suitable to extract the mussel aquaculture area.As for the large yellow croaker aquaculture area extraction,FRI2 is suitable.(2)Mussel aquaculture and the large yellow croaker aquaculture area in Zhoushan are mainly located on the side near the islands that are away from the eastern open waters.The water environment factor template suitable for mussel and large yellow croaker aquaculture was determined.(3)This two-step remote sensing method can be used for the preliminary screening of potential site selection for the mussels and large yellow croaker aquaculture area in the future.the fishery ranching index(FRI1,FRI2)in this paper can be applied to extract the mussel and large yellow croaker aquaculture areas in coastal waters around the world.展开更多
Malnutrition refers to the deficiency, imbalances, or excesses in a person’s intake of energy or nutrients [1]. Khan defines anaemia as below level of Haemoglobin in red blood shown by a lower number of functioning r...Malnutrition refers to the deficiency, imbalances, or excesses in a person’s intake of energy or nutrients [1]. Khan defines anaemia as below level of Haemoglobin in red blood shown by a lower number of functioning red blood cells [2]. The crisis in the North West and South West Regions of Cameroon has led to several negative effects on children’s living conditions. There has been an increase in malnutrition and anaemia in the South West Region and Kumba in particular. The main objective of this study was “to examine the prevalence of malnutrition and anaemia in children ≤ 5 years of age in some conflict-hit areas of Meme Division”. A descriptive cross-sectional study was conducted in 2023 from March to June. We recruited 200 children ≤ 5 years into the study from three hospitals. The regional hospital annex in Kumba, Presbyterian General Hospital Kumba and the Ntam Hospital in Kumba. Socio-demographic factors were assessed using questionnaire, nutritional status was assessed by the use anthropometric measurements and an auto haematology analyser was used to determine anaemia. The overall prevalence of malnutrition in the study area was 40.5%. The prevalence of malnutrition varied significantly (P < 0.001) with the study sites. The overall prevalence of anaemia in the study area was 70.5%. The prevalence of anaemia was not significantly associated with the study sites. The prevalence of Malnutrition and Anaemia in children ≤ 5 years of age is very high in the Kumba municipalities. This could be attributed to the ongoing crisis which has caused a lot of social migrations from rural areas to Urban areas which are safer.展开更多
Rural areas are crucial for a country’s sustainable economy.New strategies are needed to develop rural areas to improve the well-being of rural population and generate new job opportunities.This is especially importa...Rural areas are crucial for a country’s sustainable economy.New strategies are needed to develop rural areas to improve the well-being of rural population and generate new job opportunities.This is especially important in countries where agricultural production accounts for a significant share of the gross product,such as Russia.In this study,we identified the key indicators of satisfaction and differences between rural and urban citizens based on their social,economic,and environmental backgrounds,and determined whether there are well-being disparities between rural and urban areas in the Stavropol Territory,Russia.We collected primary data through a survey based on the European Social Survey framework to investigate the potential differences between rural and urban areas.By computing the regional well-being index using principal component analysis,we found that there was no statistically significant difference in well-being between rural and urban areas.Results of key indicators showed that rural residents felt psychologically more comfortable and safer,assessed their family relationships better,and adhered more to traditions and customs.However,urban residents showed better economic and social conditions(e.g.,infrastructures,medical care,education,and Internet access).The results of this study imply that we can better understand the local needs,advantages,and unique qualities,thereby gaining insight into the effectiveness of government programs.Policy-makers and local authorities can consider targeted interventions based on the findings of this study and strive to enhance the well-being of both urban and rural residents.展开更多
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years...Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.展开更多
In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extract...In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.展开更多
Access to basic infrastructure and services is a factor in economic development and an important aspect in combatting social and spatial disparities. But this access is often subject to several constraints, including ...Access to basic infrastructure and services is a factor in economic development and an important aspect in combatting social and spatial disparities. But this access is often subject to several constraints, including geographical accessibility. In this article, we aim to analyze the geographical accessibility to basic infrastructure and services in the Niakhar area, using the improved two step floating catchment area method and local spatial association indicators. The results reveal that the areas with high accessibility to health and education infrastructures and services are mainly located along the south-east and north-west gradient, while those with low accessibility are found in the south-west and north-east center. They also show high accessibility to trade services in the center of the study area.展开更多
Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the ch...Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.展开更多
Food safety and hygiene practices require a multisectoral approach including food, water, sanitation, waste management, transport, education, trade, policies and programs that enable safe food preparation, storage and...Food safety and hygiene practices require a multisectoral approach including food, water, sanitation, waste management, transport, education, trade, policies and programs that enable safe food preparation, storage and service. Unsafe food can cause illness keeping people from achieving their full potential and death. This was a descriptive study that uses a mixed method approach to derive insights into the characteristics of food vendors related to demography, knowledge, practices, infrastructure, compliance and recommendation for a policymaking framework. Using the Lemeshows’ sample size formula, 473 vendors from formal (restaurants) and informal (cookri-baffa/table top) sites were interviewed and observed. We found from discussions that respondents had a good understanding on how to keep food safe. However, observed practices were poor 93% handled food with their bare hands, 83% did not cover their hair, and 76% did not wear an apron whilst handling, preparing or serving food, 61% did not keep their finger nails clean or short and 57% did not wash their hand before preparing or serving food. Over half (51%) had access to a toilet but 32% reported their use required payment and emphasized their poor condition/inadequate management. Nearly half (47%) of the vending sites did not have a handwashing facility, with soap and water available. Only 7% reported having any authority oversight of food safety. Food safety and hygiene practices in most cookri shops and restaurants was ‘poor’ with very limited surveillance system in place by competent authorities for compliance of food operators. Hand washing, clean surroundings, and covered food were the most common and emphasized practices to mitigate the risks associated with unsafe food.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodolog...Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodology/approach–With the continuous promotion of infrastructure construction,the focus of China’s railway construction has gradually shifted to the western region.The four typical environments of large temperature differences,strong winds and dryness,high cold and low air pressure unique to the western mountainous areas of China have adverse effects on the durability of typical railway structure concrete(bridges,ballastless tracks and tunnels).This study identified the characteristics of four typical environments in the western mountainous areas of China through on-site research.The impact mechanism of the four typical environments on the durability of concrete in different structural parts of railways has been explored through theoretical analysis and experimental research;Finally,a strategy for improving the durability of railway concrete suitable for the western mountainous areas of China was proposed.Findings–The daily temperature difference in the western mountainous areas of China is more than twice that of the plain region,which will lead to significant temperature deformation and stress in the multi-layered structure of railway ballastless tracks.It will result in cracking.The wind speed in the western plateau region is about 2.5 to 3 times that of the plain region,and the average annual rainfall is only 1/5 of that in the plain region.The drying effect on the surface of casting concrete will significantly accelerate its cracking process,leading to serious durability problems.The environmental temperature in the western mountainous areas of China is generally low,and there are more freeze-thaw cycles,which will increase the risk of freeze-thaw damage to railway concrete.The environmental air pressure in the western plateau region is only 60%of that in the plain region.The moisture inside the concrete is more likely to diffuse into the surrounding environment under the pressure difference,resulting in greater water loss and shrinkage deformation of the concrete in the plateau region.The above four issues will collectively lead to the rapid deterioration of concrete durability in the western plateau region.The corresponding durability improvement suggestions from theoretical research,new technology development and standard system was proposed in this paper.Originality/value–The research can provide the mechanism of durability degradation of railway concrete in the western mountainous areas of China and corresponding improvement strategies.展开更多
Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significan...Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.展开更多
The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea inte...The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to sequ...In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to seques-ter carbon(C).However,the C dynamics in the soil-plant system when bamboo is grown outside its native area are poorly understood.Here we investigated the C mitigation potential of the fast-growing Moso bamboo(Phyllostachys edulis)introduced in Italy for climate-change mitigation.We analyzed aboveground(AGB)and belowground(as root/shoot ratio)biomass,litter and soil organic C(SOC)at O-15-and 15-30-cm depths in a 4-year-old bamboo plantation in comparison with the former annual cropland on which the bamboo was established.To have an idea of the maximum C stored at an ecosystem level,a natural forest adjacent the two sites was also considered.In the plantation,C accumulation as AGB was stimulated,with 14.8±3.1 Mg C ha^(-1) stored in 3 years;because thinning was done to remove culms from the first year,the mean sequestration rate was 4.9 Mg C ha^(-1) a^(-1).The sequestration rates were high but comparable to other fast-growing tree species in Italy(e.g.,Pinus nigra).SOC was significantly higher in the bamboo plantation than in the cropland only at the 0-15 cm depth,but SOC stock did not differ.Possibly 4 years were not enough time for a clear increase in SOC,or the high nutrient uptake by bamboos might have depleted the soil nutrients,thus inhibiting the soil organic matter formation by bacteria.In comparison,the natural forest had significantly higher C levels in all the pools.For C dynamics at an ecosystem level,the bamboo plantation on the former annual cropland led to substantial C removal from the atmosphere(about 12 Mg C ha^(-1) a^(-1)).However,despite the promising C sequestration rates by bamboo,its introduction should be carefully considered due to potential ecological problems caused by this species in overexploited environments such as the Mediterranean area.展开更多
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin...As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.展开更多
基金supported by the National Key Research and Development Program of China(2021YFC2902004)the National Natural Science Foundation of China(42072284,42027801,and 41877186).
文摘A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.
文摘BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentuating diabetic complications.An inflammatory link exists between diabetic retinopathy(DR)and periodontitis,but the studies regarding this association and the role of lipoprotein(a)[Lp(a)]and interleukin-6(IL-6)in these conditions are scarce in the literature.AIM To determine the correlation of periodontal inflamed surface area(PISA)with glycated Hb(HbA1c),serum IL-6 and Lp(a)in T2DM subjects with retinopathy.METHODS This cross-sectional study comprised 40 T2DM subjects with DR and 40 T2DM subjects without DR.All subjects were assessed for periodontal parameters[bleeding on probing(BOP),probing pocket depth,clinical attachment loss(CAL),oral hygiene index-simplified,plaque index(PI)and PISA],and systemic parameters[HbA1c,fasting plasma glucose and postprandial plasma glucose,fasting lipid profile,serum IL-6 and serum Lp(a)].RESULTS The proportion of periodontitis in T2DM with and without DR was 47.5%and 27.5%respectively.Severity of periodontitis,CAL,PISA,IL-6 and Lp(a)were higher in T2DM with DR group compared to T2DM without DR group.Significant difference was observed in the mean percentage of sites with BOP between T2DM with DR(69%)and T2DM without DR(41%),but there was no significant difference in PI(P>0.05).HbA1c was positively correlated with CAL(r=0.351,P=0.001),and PISA(r=0.393,P≤0.001)in study subjects.A positive correlation was found between PISA and IL-6(r=0.651,P<0.0001);PISA and Lp(a)(r=0.59,P<0.001);CAL and IL-6(r=0.527,P<0.0001)and CAL and Lp(a)(r=0.631,P<0.001)among study subjects.CONCLUSION Despite both groups having poor glycemic control and comparable plaque scores,the periodontal parameters were higher in DR as compared to T2DM without DR.Since a bidirectional link exists between periodontitis and DM,the presence of DR may have contributed to the severity of periodontal destruction and periodontitis may have influenced the progression of DR.
基金supported by the research funds for Coupling Research on Industrial Upgrade and Environmental Management in the Bohai Rim-Technique,methodology,and Environmental Economic Policies(No.42076221).
文摘This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.
基金National Natural Science Fund of China under Nos.52168072 and 51808467High-level Talents Support Plan of Yunnan Province of China(2020)。
文摘At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.
文摘The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enough yet thus making the need for ambitious research to be carried out. Previous study only included 81 species of orchids within ACA. This study aims to update the record of species and genera richness in the ACA. In total 198 species of orchids, belonging to 67 genera (40% and 62% of the total recorded orchid species and genera in Nepal) has been recorded in ACA. This represents an increase of 144% in species and 56% in genera over the previous data. Out of the 198 species, 99 were epiphytes, 6 were holomycotrophic and 93 were terrestrial. Among the 67 genera, Bulbophyllum (17) species were dominant, followed by Dendrobium (16), Herminium (10), Coelogyne, Plantanthera (9 each), Eria, Habenaria, Oberonia (8 each), Calanthe (7), and Liparis (6). Fifty-six species were found to be ornamentally significant and 85 species medicinally significant.
基金The National Key Research and Development Program of China under contract Nos 2023YFD2401900 and 2020YFD09008004the National Natural Science Foundation of China Key International(Regional)Cooperative Research Project under contract No.42020104009the Basic Public Welfare Research Program of Zhejiang Province under contract No.LGF21D010004.
文摘Mussel aquaculture and large yellow croaker aquaculture areas and their environmental characteristics in Zhoushan were analyzed using satellite data and in-situ surveys.A new two-step remote sensing method was proposed and applied to determine the basic environmental characteristics of the best mussel and large yellow croaker aquaculture areas.This methodology includes the first step of extraction of the location distribution and the second step of the extraction of internal environmental factors.The fishery ranching index(FRI1,FRI2)was established to extract the mussel and the large yellow croaker aquaculture area in Zhoushan,using Gaofen-1(GF-1)and Gaofen-6(GF-6)satellite data with a special resolution of 2 m.In the second step,the environmental factors such as sea surface temperature(SST),chlorophyll a(Chl-a)concentration,current and tide,suspended sediment concentration(SSC)in mussel aquaculture area and large yellow croaker aquaculture area were extracted and analyzed in detail.The results show the following three points.(1)For the extraction of the mussel aquaculture area,FRI1 and FRI2 are complementary,and the combination of FRI1 and FRI2 is suitable to extract the mussel aquaculture area.As for the large yellow croaker aquaculture area extraction,FRI2 is suitable.(2)Mussel aquaculture and the large yellow croaker aquaculture area in Zhoushan are mainly located on the side near the islands that are away from the eastern open waters.The water environment factor template suitable for mussel and large yellow croaker aquaculture was determined.(3)This two-step remote sensing method can be used for the preliminary screening of potential site selection for the mussels and large yellow croaker aquaculture area in the future.the fishery ranching index(FRI1,FRI2)in this paper can be applied to extract the mussel and large yellow croaker aquaculture areas in coastal waters around the world.
文摘Malnutrition refers to the deficiency, imbalances, or excesses in a person’s intake of energy or nutrients [1]. Khan defines anaemia as below level of Haemoglobin in red blood shown by a lower number of functioning red blood cells [2]. The crisis in the North West and South West Regions of Cameroon has led to several negative effects on children’s living conditions. There has been an increase in malnutrition and anaemia in the South West Region and Kumba in particular. The main objective of this study was “to examine the prevalence of malnutrition and anaemia in children ≤ 5 years of age in some conflict-hit areas of Meme Division”. A descriptive cross-sectional study was conducted in 2023 from March to June. We recruited 200 children ≤ 5 years into the study from three hospitals. The regional hospital annex in Kumba, Presbyterian General Hospital Kumba and the Ntam Hospital in Kumba. Socio-demographic factors were assessed using questionnaire, nutritional status was assessed by the use anthropometric measurements and an auto haematology analyser was used to determine anaemia. The overall prevalence of malnutrition in the study area was 40.5%. The prevalence of malnutrition varied significantly (P < 0.001) with the study sites. The overall prevalence of anaemia in the study area was 70.5%. The prevalence of anaemia was not significantly associated with the study sites. The prevalence of Malnutrition and Anaemia in children ≤ 5 years of age is very high in the Kumba municipalities. This could be attributed to the ongoing crisis which has caused a lot of social migrations from rural areas to Urban areas which are safer.
基金supported by the Department of Economics,Faculty of Economics and Management,Czech University of Life Science,Czech(2021B0002).
文摘Rural areas are crucial for a country’s sustainable economy.New strategies are needed to develop rural areas to improve the well-being of rural population and generate new job opportunities.This is especially important in countries where agricultural production accounts for a significant share of the gross product,such as Russia.In this study,we identified the key indicators of satisfaction and differences between rural and urban citizens based on their social,economic,and environmental backgrounds,and determined whether there are well-being disparities between rural and urban areas in the Stavropol Territory,Russia.We collected primary data through a survey based on the European Social Survey framework to investigate the potential differences between rural and urban areas.By computing the regional well-being index using principal component analysis,we found that there was no statistically significant difference in well-being between rural and urban areas.Results of key indicators showed that rural residents felt psychologically more comfortable and safer,assessed their family relationships better,and adhered more to traditions and customs.However,urban residents showed better economic and social conditions(e.g.,infrastructures,medical care,education,and Internet access).The results of this study imply that we can better understand the local needs,advantages,and unique qualities,thereby gaining insight into the effectiveness of government programs.Policy-makers and local authorities can consider targeted interventions based on the findings of this study and strive to enhance the well-being of both urban and rural residents.
基金the Space Application Center, Ahmedabad (ISRO) for providing field support under “Integrated studies of Himalayan Cryosphere” programthe Glaciology Group, Jawaharlal Nehru University for providing necessary support for this research+1 种基金the grants from SERB (CRG/2020/004877) and MOES/16/19/2017-RDEAS projectsthe support from ISRO/RES/4/690/21-22 project
文摘Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.
基金supported by the National Research Foundation of Korea(NRF)under the Ministry of ScienceICT&Future Planning(Basic Science Research Program[No.2021R1A5A6002853],[No.2022R1A2C3004964],[No.2022R1C1C2008126],[No.2022M3H4A1A03074093])
文摘In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.
文摘Access to basic infrastructure and services is a factor in economic development and an important aspect in combatting social and spatial disparities. But this access is often subject to several constraints, including geographical accessibility. In this article, we aim to analyze the geographical accessibility to basic infrastructure and services in the Niakhar area, using the improved two step floating catchment area method and local spatial association indicators. The results reveal that the areas with high accessibility to health and education infrastructures and services are mainly located along the south-east and north-west gradient, while those with low accessibility are found in the south-west and north-east center. They also show high accessibility to trade services in the center of the study area.
基金supported by Geological Research Project of the Construction Management Bureau of the Middle Route of the South to North Water Diversion Project(ZXJ/HN/YW/GC-2020037)。
文摘Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.
文摘Food safety and hygiene practices require a multisectoral approach including food, water, sanitation, waste management, transport, education, trade, policies and programs that enable safe food preparation, storage and service. Unsafe food can cause illness keeping people from achieving their full potential and death. This was a descriptive study that uses a mixed method approach to derive insights into the characteristics of food vendors related to demography, knowledge, practices, infrastructure, compliance and recommendation for a policymaking framework. Using the Lemeshows’ sample size formula, 473 vendors from formal (restaurants) and informal (cookri-baffa/table top) sites were interviewed and observed. We found from discussions that respondents had a good understanding on how to keep food safe. However, observed practices were poor 93% handled food with their bare hands, 83% did not cover their hair, and 76% did not wear an apron whilst handling, preparing or serving food, 61% did not keep their finger nails clean or short and 57% did not wash their hand before preparing or serving food. Over half (51%) had access to a toilet but 32% reported their use required payment and emphasized their poor condition/inadequate management. Nearly half (47%) of the vending sites did not have a handwashing facility, with soap and water available. Only 7% reported having any authority oversight of food safety. Food safety and hygiene practices in most cookri shops and restaurants was ‘poor’ with very limited surveillance system in place by competent authorities for compliance of food operators. Hand washing, clean surroundings, and covered food were the most common and emphasized practices to mitigate the risks associated with unsafe food.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金the National Science Foundation of China(52478289)National Key Research and Development Program of China(2020YFC1909900)Scientific Research Project of China Academy of Railway Sciences Group Co.,Ltd(2023YJ184).
文摘Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodology/approach–With the continuous promotion of infrastructure construction,the focus of China’s railway construction has gradually shifted to the western region.The four typical environments of large temperature differences,strong winds and dryness,high cold and low air pressure unique to the western mountainous areas of China have adverse effects on the durability of typical railway structure concrete(bridges,ballastless tracks and tunnels).This study identified the characteristics of four typical environments in the western mountainous areas of China through on-site research.The impact mechanism of the four typical environments on the durability of concrete in different structural parts of railways has been explored through theoretical analysis and experimental research;Finally,a strategy for improving the durability of railway concrete suitable for the western mountainous areas of China was proposed.Findings–The daily temperature difference in the western mountainous areas of China is more than twice that of the plain region,which will lead to significant temperature deformation and stress in the multi-layered structure of railway ballastless tracks.It will result in cracking.The wind speed in the western plateau region is about 2.5 to 3 times that of the plain region,and the average annual rainfall is only 1/5 of that in the plain region.The drying effect on the surface of casting concrete will significantly accelerate its cracking process,leading to serious durability problems.The environmental temperature in the western mountainous areas of China is generally low,and there are more freeze-thaw cycles,which will increase the risk of freeze-thaw damage to railway concrete.The environmental air pressure in the western plateau region is only 60%of that in the plain region.The moisture inside the concrete is more likely to diffuse into the surrounding environment under the pressure difference,resulting in greater water loss and shrinkage deformation of the concrete in the plateau region.The above four issues will collectively lead to the rapid deterioration of concrete durability in the western plateau region.The corresponding durability improvement suggestions from theoretical research,new technology development and standard system was proposed in this paper.Originality/value–The research can provide the mechanism of durability degradation of railway concrete in the western mountainous areas of China and corresponding improvement strategies.
基金supported by the Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-based Materials Open Research Program (Grant No. 2022SNJ112022SNJ12)+4 种基金National Natural Science Foundation of China (Grant No. 42371014)Hubei Key Laboratory of Disaster Prevention and Mitigation (China Three Gorges University) Open Research Program (Grant No. 2022KJZ122023KJZ19)CRSRI Open Research Program (Grant No. CKWV2021888/KY)the Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences (Grant No. KLMHESP20-0)。
文摘Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2022MD114)the Project of Global Earth Observation on Asian Delta and Estuary Corresponding to Anthropogenic Impacts and Climate Changes(No.2019YFE0127200).
文摘The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金supported by the “Project funded by the European Union-Next Generation EU”
文摘In the Mediterranean region,despite bamboo being an alien species that can seriously alter plant and ani-mal biocoenosis,the area occupied by bamboo plantations continues to increase,especially for the purpose to seques-ter carbon(C).However,the C dynamics in the soil-plant system when bamboo is grown outside its native area are poorly understood.Here we investigated the C mitigation potential of the fast-growing Moso bamboo(Phyllostachys edulis)introduced in Italy for climate-change mitigation.We analyzed aboveground(AGB)and belowground(as root/shoot ratio)biomass,litter and soil organic C(SOC)at O-15-and 15-30-cm depths in a 4-year-old bamboo plantation in comparison with the former annual cropland on which the bamboo was established.To have an idea of the maximum C stored at an ecosystem level,a natural forest adjacent the two sites was also considered.In the plantation,C accumulation as AGB was stimulated,with 14.8±3.1 Mg C ha^(-1) stored in 3 years;because thinning was done to remove culms from the first year,the mean sequestration rate was 4.9 Mg C ha^(-1) a^(-1).The sequestration rates were high but comparable to other fast-growing tree species in Italy(e.g.,Pinus nigra).SOC was significantly higher in the bamboo plantation than in the cropland only at the 0-15 cm depth,but SOC stock did not differ.Possibly 4 years were not enough time for a clear increase in SOC,or the high nutrient uptake by bamboos might have depleted the soil nutrients,thus inhibiting the soil organic matter formation by bacteria.In comparison,the natural forest had significantly higher C levels in all the pools.For C dynamics at an ecosystem level,the bamboo plantation on the former annual cropland led to substantial C removal from the atmosphere(about 12 Mg C ha^(-1) a^(-1)).However,despite the promising C sequestration rates by bamboo,its introduction should be carefully considered due to potential ecological problems caused by this species in overexploited environments such as the Mediterranean area.
基金supported by the Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management (Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China (Grant No.11802160)。
文摘As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.