In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evalu...In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.展开更多
As congestion grows in metropolitan areas, agencies tend to utilize managed lanes on their freeway systems. Managed lanes have several forms and names, such as high-occupancy vehicle (HOI0 lanes, high-occupancy toll ...As congestion grows in metropolitan areas, agencies tend to utilize managed lanes on their freeway systems. Managed lanes have several forms and names, such as high-occupancy vehicle (HOI0 lanes, high-occupancy toll (HOT) lanes, express lanes, and bus-only lanes. Although managed lanes have received significant attention as they increased the overall throughput and improved mobility without adding more lanes, little has been known about their operational capabilities. In addition, calibrating managed lane facilities can be chal- lenging as they do not necessarily follow the same behavior with general purpose freeway lanes. This paper presents an operational analysis of two HOT lane segments located in South Florida. The sites are one-lane and two-lane segments separated by flexible pylons (FPs). The paper includes a macroscopic capacity analysis, and a microscopic calibration of the two sites using VISSIM microsimulation. The research findings assist in determining the capacity and speed-flow relationship of these segments, and also provide guidance for microsimulation model calibration for practitioners. The results of the study indicate that the percent drop in capacity for the one-lane FP site is 7.6% while the flow did not substantially change after the breakdown in the two-lane FP site. The research findings also include guidelines for simulating the breakdown events and calibrating one-lane and two-lane managed lane facilities in VISSIM microsimulation software. The Wiedemann car-following parameters (CC0 = 3.9 ft, CC1 = 1.9 s, CC2 - 26.25 ft, CC4 = -0.35, and CC5 = 0.35) provided the best fit for the one-lane FP site, while the combination (CCO = 4.92 ft, CC1= 1.9 s, CC2 = 39.37 ft, CC4 = -0.7, and CC5 = 0.7) parameters is recommended for the two-lane FP site.展开更多
Over the past few decades, urban freeway congestion has been highly recognized as a serious and worsening traffic problem in the world. To relieve freeway congestion, several active traffic and demand management (ATD...Over the past few decades, urban freeway congestion has been highly recognized as a serious and worsening traffic problem in the world. To relieve freeway congestion, several active traffic and demand management (ATDM) methods have been developed. Among them, variable speed limit (VSL) aims at regulating freeway mainline flow upstream to meet existing capacity and to harmonize vehicle speed. However, congestion may still be inevitable even with VSL implemented due to extremely high demand in actual practice. This study modified an existing VSL strategy by adding a new local constraint to suggest an achievable speed limit during the control period. As a queue is a product of the congestion phenomenon in freeway, the incentives of a queue build-up in the applied coordinated VSL control situation were analyzed. Considering a congestion occurrence (a queue build-up) characterized by a sudden and sharp speed drop, speed contours were utilized to demonstrate the congestion distribution over a whole freeway network in various sce- narios. Finally, congestion distributions found in both VSL control and non-VS control situations for various scenarios were investigated to explore the impact of the applied coordinated VSL control on the congestion distribution. An authentic stretch of V^hitemud Drive (I~~ID), an urban freeway corridor in Edmonton, Alberta, Canada, was employed to implement this modified coordinated VSL control strategy; and a calibrated micro-simu- lation VISSIM model (model functions) was applied as the substitute of the real-world traffic system to test the above mentioned performance. The exploration task in this study can lay the groundwork for future research on how to improve the presented VSL control strategy for achieving the congestion mitigation effect on freeway.展开更多
文摘In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.
基金the support and encouragement of PTV Group Management during this research study
文摘As congestion grows in metropolitan areas, agencies tend to utilize managed lanes on their freeway systems. Managed lanes have several forms and names, such as high-occupancy vehicle (HOI0 lanes, high-occupancy toll (HOT) lanes, express lanes, and bus-only lanes. Although managed lanes have received significant attention as they increased the overall throughput and improved mobility without adding more lanes, little has been known about their operational capabilities. In addition, calibrating managed lane facilities can be chal- lenging as they do not necessarily follow the same behavior with general purpose freeway lanes. This paper presents an operational analysis of two HOT lane segments located in South Florida. The sites are one-lane and two-lane segments separated by flexible pylons (FPs). The paper includes a macroscopic capacity analysis, and a microscopic calibration of the two sites using VISSIM microsimulation. The research findings assist in determining the capacity and speed-flow relationship of these segments, and also provide guidance for microsimulation model calibration for practitioners. The results of the study indicate that the percent drop in capacity for the one-lane FP site is 7.6% while the flow did not substantially change after the breakdown in the two-lane FP site. The research findings also include guidelines for simulating the breakdown events and calibrating one-lane and two-lane managed lane facilities in VISSIM microsimulation software. The Wiedemann car-following parameters (CC0 = 3.9 ft, CC1 = 1.9 s, CC2 - 26.25 ft, CC4 = -0.35, and CC5 = 0.35) provided the best fit for the one-lane FP site, while the combination (CCO = 4.92 ft, CC1= 1.9 s, CC2 = 39.37 ft, CC4 = -0.7, and CC5 = 0.7) parameters is recommended for the two-lane FP site.
基金supported by the Natural Sciences and Engineering Research Council(NSERC) of Canada, City of Edmonton,and Transport Canadasupported by the National Natural Science Foundation of China(No.51208052,51308058)the Science and Technology Research and Development Program of Shaanxi Province,China(No.2013K13-04-02)
文摘Over the past few decades, urban freeway congestion has been highly recognized as a serious and worsening traffic problem in the world. To relieve freeway congestion, several active traffic and demand management (ATDM) methods have been developed. Among them, variable speed limit (VSL) aims at regulating freeway mainline flow upstream to meet existing capacity and to harmonize vehicle speed. However, congestion may still be inevitable even with VSL implemented due to extremely high demand in actual practice. This study modified an existing VSL strategy by adding a new local constraint to suggest an achievable speed limit during the control period. As a queue is a product of the congestion phenomenon in freeway, the incentives of a queue build-up in the applied coordinated VSL control situation were analyzed. Considering a congestion occurrence (a queue build-up) characterized by a sudden and sharp speed drop, speed contours were utilized to demonstrate the congestion distribution over a whole freeway network in various sce- narios. Finally, congestion distributions found in both VSL control and non-VS control situations for various scenarios were investigated to explore the impact of the applied coordinated VSL control on the congestion distribution. An authentic stretch of V^hitemud Drive (I~~ID), an urban freeway corridor in Edmonton, Alberta, Canada, was employed to implement this modified coordinated VSL control strategy; and a calibrated micro-simu- lation VISSIM model (model functions) was applied as the substitute of the real-world traffic system to test the above mentioned performance. The exploration task in this study can lay the groundwork for future research on how to improve the presented VSL control strategy for achieving the congestion mitigation effect on freeway.