To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char...To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.展开更多
The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to...The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.展开更多
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma...The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.展开更多
Freeze-thaw cycles are closely related to the slope instability in high-altitude mountain regions. In this study, cohesive coarse-grained soils were collected from a high-altitude slope in the Qinghai–Tibet Plateau t...Freeze-thaw cycles are closely related to the slope instability in high-altitude mountain regions. In this study, cohesive coarse-grained soils were collected from a high-altitude slope in the Qinghai–Tibet Plateau to study the effect of cyclic freeze-thaw on their uniaxial mechanical properties. The soil specimens were remolded with three dry densities and three moisture contents. Then, after performing a series of freeze-thaw tests in a closed system without water supply, the soil specimens were subjected to a uniaxial compression test. The results showed that the stress-strain curves of the tested soils mainly performed as strain-softening. The softening feature intensified with the increasing dry density but weakened with an increase in freeze-thaw cycles and moisture content. The uniaxial compressive strength, resilient modulus, residual strength and softening modulus decreased considerably with the increase of freeze-thaw cycles. After more than nine freeze-thaw cycles, these four parameters tended to be stable. These parameters increased with the increase of dry density and decreased with the increasing moisture content, except for the residual strength which did not exhibit any clear variation with an increase in moisture content. The residual strength, however, generally increased with an increase in dry density. The soil structural damage caused by frozen water expansion during the freeze-thaw is the major cause for the changes in mechanical behaviors of cohesive coarse-grained soils. With results in this study, the deterioration effect of freeze-thaw cycles on the mechanical properties of soils should be considered during the slope stability analysis in high-altitude mountain regions.展开更多
The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses ...The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses such as SEM, XRD and TGA measurements were performed on the selected samples after freeze-thaw cycles. The corrosion products of the concrete were distinguished and quantitatively compared by the thermal analysis. Besides, the damage mechanism considering the dynamic modulus of elastically of concrete under the coupling effect was also investigated. The experimental results show that, under the action of freeze-thaw cycles and sulfate attack, the main attack products in concrete are ettringite and gypsum. The corrosion products exposed to MgSO4 solution are more than those to Na2SO4 solution. Furthermore, the content of gypsum in concrete is less than that of ettringite in test, and some of gypsum can be observed only after a certain corrosion extent. It is also shown that MgSO4 solution has a promoting effect to the damage of concrete under freeze-thaw cycles. Whereas for Na:SO4 solution, the damage of concrete has restrained before 300 freeze-thaw cycles, but the sulfate attack accelerates the deterioration process in its further test period.展开更多
The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed...The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.展开更多
To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of f...To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of freeze-thaw and defined as a type of clayey silt under confining pressures of 100,200,and 300 kPa.Taking the number of freeze-thaw cycles,cooling temperature,initial dry density,and moisture content as the four main influencing factors of shear behavior of the tailings samples,the shear stress-strain curve,compression modulus,failure strength,cohesion,and internal friction angle were measured.The results show that the freeze-thaw cycle has an obvious weakening effect on the shear behavior of the tailings material,and the shear mechanical parameters are affected by a combination of confining pressure,freeze-thaw cycle condition,and initial physical-mechanical properties of the tailings samples.Through the microstructural analysis of the tailings samples subjected to freeze-thaw cycles,it shows that the freeze-thaw cycle mainly affects the porosity,bound water,and arrangement of the tailings particles.Subsequently,the macroscopic changes in shear strength indexes emerge,and then the stability of the tailings dam will decrease.展开更多
The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research pri...The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research primarily aims to investigate dynamic changes of the soil fraction when exposed to freeze-thaw conditions. We observed two series of Moscow morainic clayey specimens (gQⅡm): (Ⅰ) the original series, and (Ⅱ) the remolded series. We subjected each series of soil specimens to different frequencies of freeze-thaw cycles (3, 6, 20, and 40 cycles), and we used granulometric tests to analyze both series before and after exposure to freeze-thaw conditions. As a result of our experiments, the granulometric compositions tended to be distributed evenly after 40 freeze-thaw processes (i.e., content of fraction for 0.1-0.05 mm was increased after 40 freeze-thaw cycles) because the division of coarse grains and the aggregation of fine grains were synchronized during the freeze-thaw process. The soil grains in both series changed bi-directionally. In the original series, changes of the sand grains were conjugated with the clay grains, and in the remolded series, changes of the sand grains were conjugated with the silt grains, because potential energy difference caused the division and aggregation processes to relate to the counteraction process. The even distribution of soil grain size indicated the state of equilibrium or balance. The granulometric compositions were altered the most during the sixth freeze-thaw cycle, because the coefficient of the intensity variation of the grain fineness (Kvar) had its maximum value at that time.展开更多
Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-th...Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.展开更多
The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive streng...The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions.展开更多
Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan P...Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan Plateau, and their various damage processes in ap- pearance were carefully observed. Observation results show that damage of andesite was more serious than that of granite. Using an acoustic instrument, ultrasonic velocity was tested. The changing trends of velocity with the number of freeze-thaw cycles were analyzed, and the freeze-thaw cycle damaging the physical and mechanical properties of rocks can be seen. According to the changing trends of ultrasonic velocity with the number of freeze-thaw cycles, mechanical parameters of rocks, such as dynamic elasticity modulus, Poisson's ratio, and dynamic bulk modulus were analyzed. It is found that they all have declining trends as the number of fi'eeze-thaw cycles increases, and in particular, when the cycle number reaches a certain extent, the Poisson's ratio of rocks begins to become negative.展开更多
Based on salt-frost heave tests of sulfate saline soil under repeated freeze−thaw cycles,this paper discusses the mechanism of the salt-frost heave under long-term freeze−thaw cycles.The results show that the salt-fro...Based on salt-frost heave tests of sulfate saline soil under repeated freeze−thaw cycles,this paper discusses the mechanism of the salt-frost heave under long-term freeze−thaw cycles.The results show that the salt-frost heave can be restricted considerably by loads,and there is a critical load for the salt-frost heave cumulative effect.Under this load,peak values of salt-frost heave approach a constant,and the residual values become 0.There is no longer structure heave or cumulative effect of saline soil exposed to freeze−thaw cycles under the critical load.Taking cumulative effect into account in calculations of salt-frost heave,a salt-frost heave model under freeze−thaw cycles is developed.展开更多
The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading d...The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading direction under biaxial compression with stress ratio of a=0, 0.25, 0.5, 0.75, 1.0 were obtained after 0, 25, 50 cycles of freeze-thaw. Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed according to the experimental results, Based on the test data, the failure criterion expressed in terms of principal stress after different cycles of freeze-thaw, and the failure criterion with consideration of the influence of freeze-thaw cycle and stress ratio were proposed respectively.展开更多
Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different ...Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed.展开更多
To study the internal damage of concrete under freeze-thaw cycles, concrete strains were measured using embedded strain gauges. Residual strain and coefficients of freezing expansion (CFE) derived from strain-temper...To study the internal damage of concrete under freeze-thaw cycles, concrete strains were measured using embedded strain gauges. Residual strain and coefficients of freezing expansion (CFE) derived from strain-temperature curves were used to quantify the damage degree. The experimental results show that irreversible residual strain increases with the number of freeze-thaw cycles. After 50 cycles, residual strains of C20 and C35 concretes are 320με and 100με in water, and 120με and 60 με in saline solution, respectively. In lower temperature range (- 10 ℃ to - 25 ℃) CFE of C20 and C35 concretes decrease by 9.82 × 10-6/K and 8.44×10-6/K in water, and 9.38×10-6/K and 5.47×10-6/K in saline solution, respectively. Both residual strains and CFEs indicate that during the first 50 freeze-thaw cycles, the internal damage of concrete in saline solution is less than that of concrete in water. Thus residual strain and CFE can be used to measure the frost damage of concrete.展开更多
According to GBJ82-85 test method for frost resistance of concrete,four-point bending tests were used to examine the effects of mineral admixture(silica fume and fly ash)on fracture toughness,fracture energy and dynam...According to GBJ82-85 test method for frost resistance of concrete,four-point bending tests were used to examine the effects of mineral admixture(silica fume and fly ash)on fracture toughness,fracture energy and dynamic elastic modulus of concrete subjected to rapid freeze-thaw cycles The microstructure of the concrete was also analyzed.The results show that with the increase of the number of freeze-thaw cycles,the fracture toughness of concrete,and the loss of fracture energy as well as the l0ss of relative dynamic elastic modulus showed a downward trend.The air content of fresh concrete is the most important parameter to improve frost resistance of concrete There existed distinct difference for silica fume and fly ash to enhance fracture performance and microstructure of the concrete under freeze-thaw cycles.The l0ss of fracture energy and the loss of relative dynamic elastic modulus kept a good linear relationship.展开更多
Low average temperature, large temperature difference and continual freeze-thaw (F-T) cycles have significant impacts on mechanical property of asphalt pavement. F-T cycles test was applied to illustrate the mixture...Low average temperature, large temperature difference and continual freeze-thaw (F-T) cycles have significant impacts on mechanical property of asphalt pavement. F-T cycles test was applied to illustrate the mixtures' compressive characteristics. Exponential model was applied to analyze the variation of compressive characteristics with F-T cycles; Loss ratio model and Logistic model were used to present the deterioration trend with the increase of F-T cycles. ANOVA was applied to show the significant impact of F-T cycles and asphalt- aggregate ratio. The experiment results show that the compressive strength and resilient modulus decline with increasing F-T cycles; the degradation is sharp during the initial F-T cycles, after 8 F-T cycles it turns to gentle. ANOVA results show that F-T cycles, and asphalt-aggregate ratio have significant influence on the compressive characteristics. Exponential model, Loss ratio model and Logistic model are significantly fitting the test data from statistics view. These models well reflect the compressive characteristics of asphalt mixture degradation trend with increasing F-T cycles.展开更多
The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperat...The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperature strain and fatigue strain of concrete specimens were measured at the same time from one sample with stain analysis method and the relationship among these three kinds of strains was studied by fitting data to present coupling mechanism at macro level. The results showed that there was no interaction between fatigue strain and temperature strain and the coupling strain could be written by linear superposition of temperature strain and fatigue strain.展开更多
Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal varia...Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.展开更多
Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazh...Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazhun heavy-haul railway, China. A recently developed nonlinear softening-type constitutive model is utilized to model the be- havior of subgrade filling materials subjected to freeze-thaw cycles. For the convenience of practical application, the dynamic loading induced by a vehicle is treated as a quasi-static axle load. The deformation of this embankment with different moisture content under freeze-thaw cycles is compared. The results show that when subjected to the first freeze-thaw cycle, the embankment experienced significant deformation variations. Maximum deformation was usually achieved after the embankment with optimum moisture content experienced six freeze-thaw cycles, however, the em- bankment with moisre content of 8.0% and 9.5% deforms continuously even after experiencing almost ten freeze-thaw cycles. Overall, this study provides a simple nonlinear finite element approach for calculating the deformation of the embankment in changing climate conditions.展开更多
基金supported by the National Natural Science Foundation of China(Project No.52074123).
文摘To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.
文摘The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.
基金supported by Shandong Provincial Natural Science Foundation (grant number: ZR2023MD036)Key Research and Development Project in Shandong Province (grant number: 2019GGX101064)project for excellent youth foundation of the innovation teacher team, Shandong (grant number: 2022KJ310)。
文摘The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.
基金supported by the National Key R&D Program of China (Grant No. 2018YFC1505001)the Key Scientific Research Project of China Gold Group (Grant No. 2016ZGHJ/XZHTL-YQSC-26)+1 种基金the funding from the Department of Transportation of Gansu Province (Grant No. 2017-008)the Fundamental Research Funds for the Central Universities, CHD (Grant No. 300102268716)
文摘Freeze-thaw cycles are closely related to the slope instability in high-altitude mountain regions. In this study, cohesive coarse-grained soils were collected from a high-altitude slope in the Qinghai–Tibet Plateau to study the effect of cyclic freeze-thaw on their uniaxial mechanical properties. The soil specimens were remolded with three dry densities and three moisture contents. Then, after performing a series of freeze-thaw tests in a closed system without water supply, the soil specimens were subjected to a uniaxial compression test. The results showed that the stress-strain curves of the tested soils mainly performed as strain-softening. The softening feature intensified with the increasing dry density but weakened with an increase in freeze-thaw cycles and moisture content. The uniaxial compressive strength, resilient modulus, residual strength and softening modulus decreased considerably with the increase of freeze-thaw cycles. After more than nine freeze-thaw cycles, these four parameters tended to be stable. These parameters increased with the increase of dry density and decreased with the increasing moisture content, except for the residual strength which did not exhibit any clear variation with an increase in moisture content. The residual strength, however, generally increased with an increase in dry density. The soil structural damage caused by frozen water expansion during the freeze-thaw is the major cause for the changes in mechanical behaviors of cohesive coarse-grained soils. With results in this study, the deterioration effect of freeze-thaw cycles on the mechanical properties of soils should be considered during the slope stability analysis in high-altitude mountain regions.
基金Funded by the Durability and Life Forecast of Shotcrete Tunnel Structure Fund(No.51278403)the Program for Changjiang Scholars and Innovative Research Team in University
文摘The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses such as SEM, XRD and TGA measurements were performed on the selected samples after freeze-thaw cycles. The corrosion products of the concrete were distinguished and quantitatively compared by the thermal analysis. Besides, the damage mechanism considering the dynamic modulus of elastically of concrete under the coupling effect was also investigated. The experimental results show that, under the action of freeze-thaw cycles and sulfate attack, the main attack products in concrete are ettringite and gypsum. The corrosion products exposed to MgSO4 solution are more than those to Na2SO4 solution. Furthermore, the content of gypsum in concrete is less than that of ettringite in test, and some of gypsum can be observed only after a certain corrosion extent. It is also shown that MgSO4 solution has a promoting effect to the damage of concrete under freeze-thaw cycles. Whereas for Na:SO4 solution, the damage of concrete has restrained before 300 freeze-thaw cycles, but the sulfate attack accelerates the deterioration process in its further test period.
基金the National Natural Science Foundation of China(No.50479059)
文摘The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region.
文摘To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of freeze-thaw and defined as a type of clayey silt under confining pressures of 100,200,and 300 kPa.Taking the number of freeze-thaw cycles,cooling temperature,initial dry density,and moisture content as the four main influencing factors of shear behavior of the tailings samples,the shear stress-strain curve,compression modulus,failure strength,cohesion,and internal friction angle were measured.The results show that the freeze-thaw cycle has an obvious weakening effect on the shear behavior of the tailings material,and the shear mechanical parameters are affected by a combination of confining pressure,freeze-thaw cycle condition,and initial physical-mechanical properties of the tailings samples.Through the microstructural analysis of the tailings samples subjected to freeze-thaw cycles,it shows that the freeze-thaw cycle mainly affects the porosity,bound water,and arrangement of the tailings particles.Subsequently,the macroscopic changes in shear strength indexes emerge,and then the stability of the tailings dam will decrease.
基金supported in part by the National Natural Science Foundation of China(No.41301070)the West Light Program for Talent Cultivation of Chinese Academy of Sciencesthe project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,which granted to Dr.Ze Zhang
文摘The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research primarily aims to investigate dynamic changes of the soil fraction when exposed to freeze-thaw conditions. We observed two series of Moscow morainic clayey specimens (gQⅡm): (Ⅰ) the original series, and (Ⅱ) the remolded series. We subjected each series of soil specimens to different frequencies of freeze-thaw cycles (3, 6, 20, and 40 cycles), and we used granulometric tests to analyze both series before and after exposure to freeze-thaw conditions. As a result of our experiments, the granulometric compositions tended to be distributed evenly after 40 freeze-thaw processes (i.e., content of fraction for 0.1-0.05 mm was increased after 40 freeze-thaw cycles) because the division of coarse grains and the aggregation of fine grains were synchronized during the freeze-thaw process. The soil grains in both series changed bi-directionally. In the original series, changes of the sand grains were conjugated with the clay grains, and in the remolded series, changes of the sand grains were conjugated with the silt grains, because potential energy difference caused the division and aggregation processes to relate to the counteraction process. The even distribution of soil grain size indicated the state of equilibrium or balance. The granulometric compositions were altered the most during the sixth freeze-thaw cycle, because the coefficient of the intensity variation of the grain fineness (Kvar) had its maximum value at that time.
基金the support and motivation provided by National 973 Project of China (No. 2012CB026104)the Fundamental Research Funds for the Central Universities (No. 2011JBZ009)
文摘Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.
基金supported by part of the Key Project of the China Postdoctoral Science Foundation(Nos.20080430183 and 200801386)the Promotional Foundation for Excellent Middle-aged or Young Scientists of Shandong Province(No.2008BS08001)National Basic Research Program(No.2007CB714202)
文摘The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions.
基金supported in part by the Important Orientation Projects of the CAS (KZCX2-YW-Q03-04)the Grant of the Western Project Program of the Chinese Academy of Sciences (KZCX2-XB2-10)Natural Science Foundation of China (Grant No. 40625004,40821001)
文摘Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan Plateau, and their various damage processes in ap- pearance were carefully observed. Observation results show that damage of andesite was more serious than that of granite. Using an acoustic instrument, ultrasonic velocity was tested. The changing trends of velocity with the number of freeze-thaw cycles were analyzed, and the freeze-thaw cycle damaging the physical and mechanical properties of rocks can be seen. According to the changing trends of ultrasonic velocity with the number of freeze-thaw cycles, mechanical parameters of rocks, such as dynamic elasticity modulus, Poisson's ratio, and dynamic bulk modulus were analyzed. It is found that they all have declining trends as the number of fi'eeze-thaw cycles increases, and in particular, when the cycle number reaches a certain extent, the Poisson's ratio of rocks begins to become negative.
基金the General project of Chongqing Science and Technology Commission Scientific(Grant No.cstc2019jcyj-msxmX0813)Youth Program of Scientific and Technological Innovation Fund of Gansu Academy of Sciences(Grant No.2019QN-04)and is a part of the Scientific Project of Yangtze Normal University(Grant No.2017 XJQN16).
文摘Based on salt-frost heave tests of sulfate saline soil under repeated freeze−thaw cycles,this paper discusses the mechanism of the salt-frost heave under long-term freeze−thaw cycles.The results show that the salt-frost heave can be restricted considerably by loads,and there is a critical load for the salt-frost heave cumulative effect.Under this load,peak values of salt-frost heave approach a constant,and the residual values become 0.There is no longer structure heave or cumulative effect of saline soil exposed to freeze−thaw cycles under the critical load.Taking cumulative effect into account in calculations of salt-frost heave,a salt-frost heave model under freeze−thaw cycles is developed.
基金the National Natural Science Foundation of China(No.50479059)National Basic Research Program(No.2007CB714202)
文摘The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading direction under biaxial compression with stress ratio of a=0, 0.25, 0.5, 0.75, 1.0 were obtained after 0, 25, 50 cycles of freeze-thaw. Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed according to the experimental results, Based on the test data, the failure criterion expressed in terms of principal stress after different cycles of freeze-thaw, and the failure criterion with consideration of the influence of freeze-thaw cycle and stress ratio were proposed respectively.
基金supported by the National Natural Science Foundation of China (Nos. 51378057 and 41371081)
文摘Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed.
基金Funded by the National Basic Research Program of China(973 Program)(No.2009CB623106 and No.2012CB724602)
文摘To study the internal damage of concrete under freeze-thaw cycles, concrete strains were measured using embedded strain gauges. Residual strain and coefficients of freezing expansion (CFE) derived from strain-temperature curves were used to quantify the damage degree. The experimental results show that irreversible residual strain increases with the number of freeze-thaw cycles. After 50 cycles, residual strains of C20 and C35 concretes are 320με and 100με in water, and 120με and 60 με in saline solution, respectively. In lower temperature range (- 10 ℃ to - 25 ℃) CFE of C20 and C35 concretes decrease by 9.82 × 10-6/K and 8.44×10-6/K in water, and 9.38×10-6/K and 5.47×10-6/K in saline solution, respectively. Both residual strains and CFEs indicate that during the first 50 freeze-thaw cycles, the internal damage of concrete in saline solution is less than that of concrete in water. Thus residual strain and CFE can be used to measure the frost damage of concrete.
文摘According to GBJ82-85 test method for frost resistance of concrete,four-point bending tests were used to examine the effects of mineral admixture(silica fume and fly ash)on fracture toughness,fracture energy and dynamic elastic modulus of concrete subjected to rapid freeze-thaw cycles The microstructure of the concrete was also analyzed.The results show that with the increase of the number of freeze-thaw cycles,the fracture toughness of concrete,and the loss of fracture energy as well as the l0ss of relative dynamic elastic modulus showed a downward trend.The air content of fresh concrete is the most important parameter to improve frost resistance of concrete There existed distinct difference for silica fume and fly ash to enhance fracture performance and microstructure of the concrete under freeze-thaw cycles.The l0ss of fracture energy and the loss of relative dynamic elastic modulus kept a good linear relationship.
基金Funded by the National Science&Technology Support Program during the 12th Five-year Plan Period(No.2014BAG05B04)the Construction and Science Project of the Ministry of Transport of China(No.2013 318 490 010)the Doctor Postgraduate Technical Project of Chang’an University(No.2014G5210002)
文摘Low average temperature, large temperature difference and continual freeze-thaw (F-T) cycles have significant impacts on mechanical property of asphalt pavement. F-T cycles test was applied to illustrate the mixtures' compressive characteristics. Exponential model was applied to analyze the variation of compressive characteristics with F-T cycles; Loss ratio model and Logistic model were used to present the deterioration trend with the increase of F-T cycles. ANOVA was applied to show the significant impact of F-T cycles and asphalt- aggregate ratio. The experiment results show that the compressive strength and resilient modulus decline with increasing F-T cycles; the degradation is sharp during the initial F-T cycles, after 8 F-T cycles it turns to gentle. ANOVA results show that F-T cycles, and asphalt-aggregate ratio have significant influence on the compressive characteristics. Exponential model, Loss ratio model and Logistic model are significantly fitting the test data from statistics view. These models well reflect the compressive characteristics of asphalt mixture degradation trend with increasing F-T cycles.
基金Funded by the Major State Basic Research Development Program of China(No.2009CB623202)the National Natural Science Foundation of China(No.5107-8081)
文摘The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperature strain and fatigue strain of concrete specimens were measured at the same time from one sample with stain analysis method and the relationship among these three kinds of strains was studied by fitting data to present coupling mechanism at macro level. The results showed that there was no interaction between fatigue strain and temperature strain and the coupling strain could be written by linear superposition of temperature strain and fatigue strain.
基金supported by the National Science and Technology Support Plan of China (2015BAD07B02)
文摘Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.
基金supported by the National Natural Science Foundation of China (Grant No. 41430634)the Foundation Project Program 973 of China (No. 2012CB026104)+2 种基金the Foundation Project Program of SHENHUA BAOSHEN Railway Corporation Limited (No. 201212240384)Technology Research and Development Plan Program of Heilongjiang Province, China (No. GZ13A009)State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining & Technology (Grant No. SKLGDUEK1209)
文摘Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazhun heavy-haul railway, China. A recently developed nonlinear softening-type constitutive model is utilized to model the be- havior of subgrade filling materials subjected to freeze-thaw cycles. For the convenience of practical application, the dynamic loading induced by a vehicle is treated as a quasi-static axle load. The deformation of this embankment with different moisture content under freeze-thaw cycles is compared. The results show that when subjected to the first freeze-thaw cycle, the embankment experienced significant deformation variations. Maximum deformation was usually achieved after the embankment with optimum moisture content experienced six freeze-thaw cycles, however, the em- bankment with moisre content of 8.0% and 9.5% deforms continuously even after experiencing almost ten freeze-thaw cycles. Overall, this study provides a simple nonlinear finite element approach for calculating the deformation of the embankment in changing climate conditions.