Camu-camu (Myrciaria dubia (H.B.K.) Mc Vaugh) is a fruit native to the Amazon region and is considered the greatest natural source of vitamin C worldwide. It is also a promising source of many phenolic compounds, incl...Camu-camu (Myrciaria dubia (H.B.K.) Mc Vaugh) is a fruit native to the Amazon region and is considered the greatest natural source of vitamin C worldwide. It is also a promising source of many phenolic compounds, including flavonoids and anthocyanins. Given the growing rates of chronic non-communicable diseases such as dyslipidemia, obesity and diabetesworldwide, freeze-dried camu-camu can be used for its functional properties, which can reduce the incidence of these diseases. Hence, the objective of this study was to produce freeze-dried camu-camu pulp and present it as an alternative functional food because of its high production and use potential, adding value to this fruit in particular, not very demanded by the food industry. Freeze-dried camu-camu pulp is a pink, homogeneous powder with great antioxidant capacity, 52,000 μmol TE/g, six times greater than freeze-dried acai powder. It is also very rich in vitamin C (20.31 g/100g), potassium (796.99 mg/100g), carbohydrates (47.00 g/100g), dietary fiber (19.23 g/100 g), many amino acids, other vitamins, and anthocyanins (0.739 mg/g). The camu-camu freeze-drying process is an effective alternative way to preserve the fruit, preserving its macronutrient and vitamin C contents. Camu-camu is also an excellent source of other bioactive compounds, such as minerals and other phenolic compounds. In conclusion, camu-camu can be used to introduce bioactive compounds into food products and to delay or prevent many human diseases.展开更多
With the vacuum freeze-drying technology, frozen dumpling wrappers were prepared, to investigate the effects of six kinds of food additives, including modified starch, compound phosphate, maltodextrin, guar gum, disti...With the vacuum freeze-drying technology, frozen dumpling wrappers were prepared, to investigate the effects of six kinds of food additives, including modified starch, compound phosphate, maltodextrin, guar gum, distilled monoglycerides and transglutaminase (TG enzyme), on the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers. The results showed that, with respective addition of 6% modified starch, O. 1% compound phosphate, 10% maltodextrin, 0.4% guar gum, 0.4% distilled monoglyceride and 0.3% transglutaminase, the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers were the highest.展开更多
文摘Camu-camu (Myrciaria dubia (H.B.K.) Mc Vaugh) is a fruit native to the Amazon region and is considered the greatest natural source of vitamin C worldwide. It is also a promising source of many phenolic compounds, including flavonoids and anthocyanins. Given the growing rates of chronic non-communicable diseases such as dyslipidemia, obesity and diabetesworldwide, freeze-dried camu-camu can be used for its functional properties, which can reduce the incidence of these diseases. Hence, the objective of this study was to produce freeze-dried camu-camu pulp and present it as an alternative functional food because of its high production and use potential, adding value to this fruit in particular, not very demanded by the food industry. Freeze-dried camu-camu pulp is a pink, homogeneous powder with great antioxidant capacity, 52,000 μmol TE/g, six times greater than freeze-dried acai powder. It is also very rich in vitamin C (20.31 g/100g), potassium (796.99 mg/100g), carbohydrates (47.00 g/100g), dietary fiber (19.23 g/100 g), many amino acids, other vitamins, and anthocyanins (0.739 mg/g). The camu-camu freeze-drying process is an effective alternative way to preserve the fruit, preserving its macronutrient and vitamin C contents. Camu-camu is also an excellent source of other bioactive compounds, such as minerals and other phenolic compounds. In conclusion, camu-camu can be used to introduce bioactive compounds into food products and to delay or prevent many human diseases.
基金Supported by National Undergraduate Training Program for Innovation and Entrepreneurship(201410459011)
文摘With the vacuum freeze-drying technology, frozen dumpling wrappers were prepared, to investigate the effects of six kinds of food additives, including modified starch, compound phosphate, maltodextrin, guar gum, distilled monoglycerides and transglutaminase (TG enzyme), on the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers. The results showed that, with respective addition of 6% modified starch, O. 1% compound phosphate, 10% maltodextrin, 0.4% guar gum, 0.4% distilled monoglyceride and 0.3% transglutaminase, the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers were the highest.
文摘对收集的市售9种类型特殊膳食用食品,共46个样品,分别采用渗透压冰点检测仪器和渗透压露点检测仪器进行测定,比对分析方法间的差异性。结果表明,市售特殊膳食用食品在冰点仪器检测范围为195~763 mOsmol/kg,相对标准偏差(relative standard deviation,RSD)为0.20%~4.08%;露点法检测范围为197~649 mmol/kg,RSD为0.00%~3.66%。本研究发现不同冲泡方式对测定结果具有显著影响,溶液温度也会影响测定结果的平行性。针对同一样品的两种测定方法结果进行统计学分析(采用t检验法),结果表明:31个样品的两种测定方法差异显著。通过实验研究推断,样品溶液是否达到理想稀溶液状态是影响两种方法存在显著差异的主要因素。本研究为特殊膳食用食品中渗透压检测情况的后续研究提供理论基础和方向,还可以为特殊膳食用食品的产品生产设计过程提供一些亟需注意的关键点,为国民健康食品的开发提供一定的理论基础。