期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of freeze-thaw cycles on sandstone in sunny and shady slopes
1
作者 Dian Xiao Xiaoyan Zhao +3 位作者 Corrado Fidelibus Roberto Tomás Qiu Lu Hongwei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2503-2515,共13页
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha... A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions. 展开更多
关键词 Sunny-shady slope freeze and thaw Pore structure Tight rocks Talus slope Cold regions
下载PDF
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
2
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 freeze–thaw cycles Quantification Machine learning algorithms Qinghai–Tibet Plateau CONCRETE
下载PDF
Surface crack evolution patterns in freeze-thaw damage of fissured rock bodies
3
作者 KANG Zhiqiang WANG Zhilei +2 位作者 SHAO Luhang FENG Jiangjiang YAO Xulong 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3094-3107,共14页
To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char... To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses. 展开更多
关键词 freeze‒thaw cycles Fissured sandstone Particle flow software Rock mechanics Crack extension pattern DIC technique
下载PDF
Response of Freezing/Thawing Indexes to the Wetting Trend under Warming Climate Conditions over the Qinghai–Tibetan Plateau during 1961–2010:A Numerical Simulation 被引量:3
4
作者 Xuewei FANG Zhi LI +5 位作者 Chen CHENG Klaus FRAEDRICH Anqi WANG Yihui CHEN Yige XU Shihua LYU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期211-222,共12页
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ... Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation. 展开更多
关键词 freezing/thawing indexes numerical modeling wetting process frozen ground Qinghai–Tibetan Plateau
下载PDF
Coupling of the Calculated Freezing and Thawing Front Parameterization in the Earth System Model CAS-ESM 被引量:3
5
作者 Ruichao LI Jinbo XIE +5 位作者 Zhenghui XIE Binghao JIA Junqiang GAO Peihua QIN Longhuan WANG Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1671-1688,共18页
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro... The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process. 展开更多
关键词 frozen ground freezing and thawing fronts maximum freezing depth active layer thickness earth system model CAS-ESM
下载PDF
Thinning intensity aff ects carbon sequestration and release in seasonal freeze–thaw areas 被引量:1
6
作者 Tong Gao Xinyu Song +3 位作者 Yunze Ren Hui Liu Hangfeng Qu Xibin Dong 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期993-1006,共14页
To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varyi... To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varying the number of temperature cycles,the eff ects of various thinning intensities in four seasons.The rate of mass,litter organic carbon,and soil organic carbon(SOC)loss in response to temperature variations was examined in two degrees of decomposition.The unfrozen season had the highest decomposition rate of litter,followed by the frozen season.Semi-decomposed litter had a higher decomposition rate than undecomposed litter.The decomposition rate of litter was the highest when the thinning intensity was 10%,while the litter and SOC were low.Forest litter had a good carbon sequestration impact in the unfrozen and freeze–thaw seasons,while the converse was confi rmed in the frozen and thaw seasons.The best carbon sequestration impact was identifi ed in litter,and soil layers under a 20–25%thinning intensity,and the infl uence of undecomposed litter on SOC was more noticeable than that of semi-decomposed litter.Both litter and soil can store carbon:however,carbon is transported from undecomposed litter to semi-decomposed litter and to the soil over time.In summary,the best thinning intensity being 20–25%. 展开更多
关键词 Forest carbon cycle Seasonal freeze–thaw THINNING Climate change
下载PDF
Effects of Freeze–thaw Cycles on Soil Mechanical and Physical Properties in the Qinghai–Tibet Plateau 被引量:34
7
作者 XIE Sheng-bo QU Jian-jun +2 位作者 LAI Yuan-ming ZHOU Zhi-wei XU Xiang-tian 《Journal of Mountain Science》 SCIE CSCD 2015年第4期999-1009,共11页
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in t... Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau. 展开更多
关键词 Qinghai Tibet Plateau Soil erosion freeze thaw action Mechanical behavior
下载PDF
Effects of Freeze/Thaw Cycles and Gas Purging Method on Polymer Electrolyte Membrane Fuel Cells 被引量:7
8
作者 张生生 俞红梅 +3 位作者 朱红 侯俊波 衣宝廉 明平文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6期802-805,共4页
At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components o... At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components of PEMFC-membrane-electrode assembly (MEA) and seek feasible measures to avoid degradation. The effect of freeze/thaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freeze/thaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable performance under subzero temperature and gas purging is proved to be the effective operation. 展开更多
关键词 polymer ELECTROLYTE membrane fuel cell (PEMFC) freeze/thaw cycle ELECTRODE structure performance degradation GAS PURGING
下载PDF
Experimental study of dynamic resilient modulus of subgrade soils under coupling of freeze–thaw cycles and dynamic load 被引量:11
9
作者 ZHAO Yang LU Zheng +2 位作者 YAO Hai-lin GU Fan DUAN Ya-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2043-2053,共11页
Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a m... Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas. 展开更多
关键词 dynamic resilient modulus freeze–thaw cycles dynamic load dynamic triaxial test prediction model
下载PDF
Mechanics Behavior of Ultra High Toughness Cementitious Composites after Freezing and Thawing 被引量:9
10
作者 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期509-514,共6页
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin... Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions. 展开更多
关键词 ultra high toughness cementitious composites cyclic freezing and thawing flexural strength multiple cracking flexural toughness
下载PDF
The mechanism underlying overwintering death in poplar:the cumulative effect of effective freeze-thaw damage 被引量:4
11
作者 Chengchao Yang Jiandong Peng +3 位作者 Xiaoyu Li Dejun Liang Zhiyan Yang Yan Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期219-229,共11页
We analyzed the relationships linking overwintering death and frost cracking to temperature and sunlight as well as the effects of low temperatures and freeze–thaw cycles on bud-burst rates,relative electrical conduc... We analyzed the relationships linking overwintering death and frost cracking to temperature and sunlight as well as the effects of low temperatures and freeze–thaw cycles on bud-burst rates,relative electrical conductivity,and phloem and cambial ultrastructures of poplar.Overwintering death rates of poplar were not correlated with negative accumulated temperature or winter minimum temperature.Freeze–thaw cycles caused more bud damage than constant exposure to low temperatures.Resistance to freeze–thaw cycles differed among clones,and the budburst rate decreased with increasing exposure to freeze–thaw cycles.Cold-resistant clones had the lowest relative electrical conductivity.Chloroplasts exhibited the fastest and the most obvious reaction to freeze–thaw damage,whereas a single freeze–thaw cycle caused little damage to cambium ultrastructure.Several such cycles resulted in damage to plasma membranes,severe damage to organelles,dehydration of cells and cell death.We conclude that overwintering death of poplar is mainly attributed to the accumulation of effective freeze–thaw damage beyond the limits of freeze–thaw resistance. 展开更多
关键词 Effective freeze–thaw freeze–thaw resistance MECHANISM Overwintering death POPULUS Ultrastructure
下载PDF
The Impact of Soil Freezing/Thawing Processes on Water and Energy Balances 被引量:5
12
作者 张霞 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期169-177,共9页
A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liqui... A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods. 展开更多
关键词 frozen soil water and energy balances freezing/thawing processes surface flux
下载PDF
Effect on anaerobic digestion performance of corn stover by freezing–thawing with ammonia pretreatment 被引量:3
13
作者 Hairong Yuan Yanyan Lan +3 位作者 Jialin Zhu Akiber Chufo Wachemo Xiujin Li Liang Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期200-207,共8页
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o... In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application. 展开更多
关键词 Freezing–thawing AMMONIA PRETREATMENT Anaerobic DIGESTION Corn STOVER
下载PDF
Influences of Seasonal Freezing and Thawing on Soil Water-stable Aggregates in Orchard in High Cold Region,Northeast China 被引量:3
14
作者 LIANG Yunjiang DENG Xu +4 位作者 SONG Tao CHEN Guoshuang WANG Yuemei ZHANG Qing LU Xinrui 《Chinese Geographical Science》 SCIE CSCD 2021年第2期234-247,共14页
Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of ... Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards. 展开更多
关键词 water-stable aggregates orchard age apple-pear orchard soil seasonal freezing and thawing soil degradation high cold region
下载PDF
Cracking in an expansive soil under freeze–thaw cycles 被引量:3
15
作者 Yang Lu SiHong Liu 《Research in Cold and Arid Regions》 CSCD 2017年第4期392-397,共6页
Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing. Cracking can also occur in expansive clayey soils under freeze–thaw cycles, of which little attentio... Expansive soils located in cold regions can easily endure the action of frost heaving and cyclic freezing–thawing. Cracking can also occur in expansive clayey soils under freeze–thaw cycles, of which little attention has been paid on this issue.In this study, laboratory experiment and cracking analysis were performed on an expansive soil. Crack patterns were quantitatively analyzed using the fractal concept. The relationships among crack pattern, water loss, number of freeze–thaw cycles, and fractal dimension were discussed. It was found that crack patterns on the surface exhibit a hierarchical network structure that is fractal at a statistical level. Cracks induced by freeze–thaw cycles are shorter, more irregularly oriented,and slowly evolves from an irregularly rectilinear pattern towards a polygonal or quasi–hexagonal one; water loss, closely related to specimen thickness, plays a significant role in the process of soil cracking; crack development under freeze-thaw cycles are not only attributed to capillary effect, but also to expansion and absorption effects. 展开更多
关键词 expansive SOILS cracks freeze–thaw cycles fractals CAPILLARY EXPANSION ABSORPTION
下载PDF
Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model 被引量:4
16
作者 Junqiang GAO Zhenghui XIE +1 位作者 Aiwen WANG Zhendong LUO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第11期1467-1478,共12页
Freeze-thaw processes significantly modulate hydraulic and thermal char- acteristics of soil. The changes in the frost and thaw fronts (FTFs) affect the water and energy cycles between the land surface and the atmos... Freeze-thaw processes significantly modulate hydraulic and thermal char- acteristics of soil. The changes in the frost and thaw fronts (FTFs) affect the water and energy cycles between the land surface and the atmosphere. Thus, the frozen soil com- prising permafrost and seasonally frozen soil has important effects on the land surface hydrology in cold regions. In this study, a two-directional freeze and thaw algorithm is incorporated into a thermal diffusion equation for simulating FTFs. A local adaptive variable-grid method is used to discretize the model. Sensitivity tests demonstrate that the method is stable and FTFs can be tracked continuously. The FTFs and soil tempera- ture at the Qinghai-Tibet Plateau D66 site are simulated hourly from September 1, 1997 to September 22, 1998. The results show that the incorporated model performs much better in the soil temperature simulation than the original thermal diffusion equation, showing potential applications of the method in land-surface process modeling. 展开更多
关键词 freeze and thaw algorithm frost and thaw front (FTF) sensitivity test thermal diffusion equation
下载PDF
Typical Soft–Sediment Deformation Structures Induced by Freeze/Thaw Cycles: A Case Study of Quaternary Alluvial Deposits in the Northern Qiangtang Basin, Tibetan Plateau 被引量:2
17
作者 ZHONG Ning LI Haibing +4 位作者 JIANG Hanchao LU Haijian ZHENG Yong HAN Shuai YE Jiachan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第1期176-188,共13页
With the objective of establishing a distinction between deformation structures caused by freeze/thaw cycles and those resulting from seismic activity, we studied three well–exposed alluvial deposits in a section at ... With the objective of establishing a distinction between deformation structures caused by freeze/thaw cycles and those resulting from seismic activity, we studied three well–exposed alluvial deposits in a section at Dogai Coring, northern Qiangtang Basin, Tibetan Plateau. Deformation is present in the form of plastic structures(diapirs, folds and clastic dykes), brittle structures(micro–faults) and cryogenic wedges. These soft–sediment deformation features(except the micro–faults) are mainly characterized by meter–scale, non–interlayered, low–speed and low–pressure displacements within soft sediments, most commonly in the form of plastic deformation. Taking into account the geographic setting, lithology and deformation features, we interpret these soft–sediment deformation features as the products of freeze/thaw cycles, rather than of earthquake–induced shock waves, thus reflecting regional temperature changes and fluctuations of hydrothermal conditions in the uppermost sediments. The micro–faults(close to linear hot springs) are ascribed to regional fault activity;however, we were unable to identify the nature of the micro–faults, perhaps due to disturbance by subsequent freeze/thaw cycles. This study may serve as a guide to recognizing the differences between deformation structures attributed to freeze/thaw cycles and seismic processes. 展开更多
关键词 soft–sediment deformation STRUCTURES freeze/thaw cycles Dogai CORING QIANGTANG Basin
下载PDF
Stress-Strain Relationship and Failure Criterion for Concrete after Freezing and Thawing Cycles 被引量:5
18
作者 罗昕 卫军 《Journal of Southwest Jiaotong University(English Edition)》 2006年第3期265-271,共7页
The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of intern... The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed. 展开更多
关键词 CONCRETE DAMAGE Stress-strain relationship Strength theory Freezing and thawing cycles Supersonic velocity
下载PDF
Comparison of the water change characteristics between the formation and dissociation of methane hydrate and the freezing and thawing of ice in sand 被引量:2
19
作者 Peng Zhang Qingbai Wu Yingmei Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期205-210,共6页
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water conten... Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation. 展开更多
关键词 methane hydrate ICE formation and dissociation process freezing and thawing process water change
下载PDF
A model of unfrozen water content in rock during freezing and thawing with experimental validation by nuclear magnetic resonance 被引量:2
20
作者 Zhouzhou Su Xianjun Tan +2 位作者 Weizhong Chen Hailiang Jia Fei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1545-1555,共11页
The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock durin... The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock during freezing and thawing process,considering the influence of unfrozen water film and rock pore structure,which can reflect the hysteresis and super-cooling effects.The pore size distribution cu rves of red sandsto ne and its unfrozen water conte nt under different temperatures during the freezing and thawing process were measured using nuclear magnetic resonance(NMR) to validate the proposed model.Comparison between the experimental and calculated results indicated that the theoretical model accu rately reflected the water content change law of red sandstone during the freezing and thawing process.Furthermore,the influences of Hamaker constant and surface relaxation parameter on the model results were examined.The results showed that the appropriate magnitude order of Hamaker constant for the red sandstone was 10J to 10J;and when the relaxation parameter of the rock surface was within 25-30 μm/ms,the calculated unfrozen water content using the proposed model was consistent with the experimental value. 展开更多
关键词 Freezing and thawing Unfrozen water content Super-cooling and hysteresis Nuclear magnetic resonance(NMR) Unfrozen water calculation model Red sandstone
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部