期刊文献+
共找到429,052篇文章
< 1 2 250 >
每页显示 20 50 100
Freeze-thaw process induced by increased precipitation affects root growth of alpine steppe on the Tibetan Plateau
1
作者 QIN Xiao-jing NIE Xiao-jun +1 位作者 WANG Xiao-dan HONG Jiang-tao 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3010-3017,共8页
The response of vegetation productivity to precipitation is becoming a worldwide concern.Most reports on responses of vegetation to precipitation trends are based on the growth season.In the soil freeze/thaw process,t... The response of vegetation productivity to precipitation is becoming a worldwide concern.Most reports on responses of vegetation to precipitation trends are based on the growth season.In the soil freeze/thaw process,the soil water phase and heat transport change can affect root growth,especially during the thawing process in early spring.A field experiment with increased precipitation(control,increased 25%and increased 50%)was conducted to measure the effects of soil water in early spring on above-and below-ground productivity in an alpine steppe over two growing seasons from June 2017 to September 2018.The increased 50%treatment significantly increased the soil moisture at the 10 cm depth,there was no difference in soil moisture between the increased 25%treatment and the control in the growing season,which was not consistent in the freeze/thaw process.Increased soil moisture during the non-growing season retarded root growth.Increased precipitation in the freezing-thawing period can partially offset the difference between the control and increased precipitation plots in both above-and below-ground biomass. 展开更多
关键词 freeze-thaw process PRECIPITATION Root length Plant coverage Alpine grassland
下载PDF
The Surface Energy Budget and Its Impact on the Freeze-thaw Processes of Active Layer in Permafrost Regions of the Qinghai-Tibetan Plateau 被引量:1
2
作者 Junjie MA Ren LI +7 位作者 Hongchao LIU Zhongwei HUANG Tonghua WU Guojie HU Yao XIAO Lin ZHAO Yizhen DU Shuhua YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第1期189-200,共12页
The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions.In this study,in situ data collected from 2005 to 2015 at the Tangg... The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions.In this study,in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes,the interaction between surface energy budget and freeze-thaw processes.The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations.Annual average net radiation(R_(n))for 2010 was 86.5 W m^(-2),with the largest being in July and smallest in November.Surface soil heat flux(G_(0))was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m^(-2).Variations in R_(n) and G_(0) were closely related to freeze-thaw processes.Sensible heat flux(H)was the main energy budget component during cold seasons,whereas latent heat flux(LE)dominated surface energy distribution in warm seasons.Freeze-thaw processes,snow cover,precipitation,and surface conditions were important influence factors for surface energy flux.Albedo was strongly dependent on soil moisture content and ground surface state,increasing significantly when land surface was covered with deep snow,and exhibited negative correlation with surface soil moisture content.Energy variation was significantly related to active layer thaw depth.Soil heat balance coefficient K was>1 during the investigation time period,indicating the permafrost in the Tanggula area tended to degrade. 展开更多
关键词 Qinghai-Tibetan Plateau PERMAFROST energy budget freeze-thaw process thawing depth
下载PDF
Freeze-thaw processes of active-layer soils in the Nanweng'he River National Natural Reserve in the Da Xing'anling Mountains,northern Northeast China 被引量:2
3
作者 RuiXia He HuiJun Jin +2 位作者 XiaoLi Chang YongPing Wang LiZhong Wang 《Research in Cold and Arid Regions》 CSCD 2018年第2期104-113,共10页
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and thei... The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation. 展开更多
关键词 Nanweng'he RIVER NATIONAL NATURAL RESERVE ACTIVE LAYER freeze-thawing processes moisture content vegetation effect
下载PDF
Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere 被引量:5
4
作者 Di Ma SiQiong Luo +4 位作者 DongLin Guo ShiHua Lyu XianHong Meng BoLi Chen LiHui Luo 《Research in Cold and Arid Regions》 CSCD 2021年第1期18-29,共12页
Soil freeze-thaw process is closely related to surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,two numerical experiments(including and excluding soil freeze-thaw process)were desig... Soil freeze-thaw process is closely related to surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,two numerical experiments(including and excluding soil freeze-thaw process)were designed to examine the effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region in the Northern Hemisphere based on the state-of-the-art Community Earth System Model version 1.0.5.Results show that in response to soil freeze-thaw process,the area averaged soil temperature in the shallow layer(0.0175−0.0451 m)decreases by 0.35℃in the TP(Tibetan Plateau),0.69℃in CES(Central and Eastern Siberia),and 0.6℃in NA(North America)during summer,and increases by 1.93℃in the TP,2.28℃in CES and 1.61℃in NA during winter,respectively.Meanwhile,in response to soil freeze-thaw process,the area averaged soil liquid water content increases in summer and decrease in winter.For surface heat flux components,the ground heat flux is most significantly affected by the freeze-thaw process in both summer and winter,followed by sensible heat flux and latent heat flux in summer.In the TP area,the ground heat flux increases by 2.82 W/m2(28.5%)in summer and decreases by 3.63 W/m2(40%)in winter.Meanwhile,in CES,the ground heat flux increases by 1.89 W/m2(11.3%)in summer and decreases by 1.41 W/m2(18.6%)in winter.The heat fluxes in the Tibetan Plateau are more susceptible to the freeze-thaw process compared with the high-latitude frozen soil regions.Soil freeze-thaw process can induce significant warming in the Tibetan Plateau in winter.Also,this process induces significant cooling in high-latitude regions in summer.The frozen ground can prevent soil liquid water from infiltrating to deep soil layers at the beginning of thawing;however,as the frozen ground thaws continuously,the infiltration of the liquid water increases and the deep soil can store water like a sponge,accompanied by decreasing surface runoff.The influence of the soil freeze-thaw process on surface hydrologic and thermal fluxes varies seasonally and spatially. 展开更多
关键词 freeze-thaw effect hydrologic and thermal frozen ground Northern Hemisphere
下载PDF
Changes in global land surface frozen ground and freeze-thaw processes during 1950-2020 based on ERA5-Land data
5
作者 Yong YANG Ren-Sheng CHEN +2 位作者 Yong-Jian DING Hong-Yuan LI Zhang-Wen LIU 《Advances in Climate Change Research》 SCIE CSCD 2024年第2期265-274,共10页
Frozen ground(FG)plays an important role in global and regional climates and environments through changes in land freeze-thaw processes,which have been conducted mainly in different regions.However,the changes in land... Frozen ground(FG)plays an important role in global and regional climates and environments through changes in land freeze-thaw processes,which have been conducted mainly in different regions.However,the changes in land surface freeze-thaw processes under climate change on a global scale are still unclear.Based on ERA5-Land hourly land skin temperature data,this study evaluated changes in the global FG area,global land surface first freeze date(FFD),last freeze date(LFD)and frost-free period(FFP)from 1950 to 2020.The results show that the current FG areas(1991-2020 mean)in the Northern Hemisphere(NH),Southern Hemisphere(SH),and globe are 68.50×10^(6),9.03×10^(6),and 77.53×10^(6)km^(2),which account for 72.4%,26.8%,and 60.4%of the exposed land(excluding glaciers,ice sheets,and water bodies)in the NH,SH and the globe,respectively;further,relative to 1951-1980,the FG area decreased by 1.9%,8.8%,and 2.8%,respectively.Seasonally FG at lower latitudes degrades to intermittently FG,and intermittently FG degrades to non-frozen ground,which caused the global FG boundary to retreat to higher latitudes from 1950 to 2020.The annual FG areas in the NH,SH,and globe all show significant decreasing trends(p<0.05)from 1950 to 2020 at-0.32×10^(6),-0.22×10^(6),and-0.54×10^(6)km^(2)per decade,respectively.The FFP prolongation in the NH is mainly influenced by LFD advance,while in the SH it is mainly controlled by FFD delay.The prolongation trend of FFP in the NH(1.34 d per decade)is larger than that in the SH(1.15 d per decade). 展开更多
关键词 Frozen ground freeze-thaw processes Frost-free period First freeze date Global warming
原文传递
Effect of bubble morphology and behavior on power consumption in non-Newtonian fluids’aeration process 被引量:1
6
作者 Xiemin Liu Jing Wan +5 位作者 Jinnan Sun Lin Zhang Feng Zhang Zhibing Zhang Xinyao Li Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期243-254,共12页
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o... Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm. 展开更多
关键词 Non-Newtonian fluids aeration process Power consumption Volumetric mass transfer rate Bubble size
下载PDF
Frost deformation and microstructure evolution of porous rock under uniform and unidirectional freeze-thaw conditions
7
作者 LV Zhitao LIU Jintao +1 位作者 WAN Ling LIU Weiping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2855-2869,共15页
The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has rece... The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale. 展开更多
关键词 Frost deformation Microstructure evolution Porous rock Unidirectional freeze-thaw cycles Uniform freeze-thaw cycles
下载PDF
Fractal Study on the Evolution of Micro-Pores in Concrete Under Freeze-Thaw
8
作者 孙浩然 邹春霞 +2 位作者 XU Deru GUO Xiaosong HUANG Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期109-117,共9页
After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and t... After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and the 3D pore distribution curve before and after freezing and thawing. The fractal dimension is utilized to characterize the two-dimensional topography image and the three-dimensional pore distribution, quantitatively. The results reveal that the surface porosity and volume porosity increase as the freeze-thaw action increases. Self-similarity characteristics exist in micro-damage inside the concrete. In the fractal dimension, it is possible to characterize pore evolution quantitatively. The fractal dimension correlates with pore damage evolution. The fractal dimension effectively quantitatively characterizes micro-damage features at various scales from the local to the global level. 展开更多
关键词 fractal dimension freeze-thaw cycle CONCRETE SEM NMR
下载PDF
Freeze-thaw cycles and associated geomorphology in a post-glacial environment:current glacial,paraglacial,periglacial and proglacial scenarios at Pico de Orizaba volcano,Mexico
9
作者 Víctor SOTO Carlos M.WELSH R. +1 位作者 Kenji YOSHIKAWA Hugo DELGADO GRANADOS 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1954-1977,共24页
The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retracti... The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water. 展开更多
关键词 freeze-thaw Gelifraction Mountain mechanical erosion Periglacial geomorphology Postglacial scenarios
下载PDF
Effect of sodium starch octenyl succinate-based Pickering emulsion on the physicochemical properties of hairtail myofibrillar protein gel subjected to multiple freeze-thaw cycles
10
作者 Huinan Wang Jiaxin Zhang +3 位作者 Xinran Liu Jinxiang Wang Xuepeng Li Jianrong Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1018-1028,共11页
A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles... A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs. 展开更多
关键词 Pickering emulsion Myofibrillar protein Gel properties freeze-thaw stability Intermolecular interactions
下载PDF
Surrounding rock pressure in the tunnel portal section through moraine under freeze-thaw action
11
作者 CHEN Zhimin LIU Baoli +1 位作者 LIU Yaohui XU Jiangtao 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2480-2493,共14页
Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and c... Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions. 展开更多
关键词 MORAINES freeze-thaw cycles Direct shear test Surrounding rock pressure
下载PDF
Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete
12
作者 Yang Li Sibo Jiang Ruixin Lan 《Structural Durability & Health Monitoring》 EI 2024年第3期255-276,共22页
Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of differe... Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperaturecycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl−ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show thatthe minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. TheCl− ion concentration and growth rate increased with the increasing crack width. Based on the experimental modeland in accordance with Fick’s second law of diffusion, the Cl− ion diffusion equation was modified by introducingcorrection factors in consideration of the freeze-thaw temperature, crack width, and their coupling effect.The experimental and fitting results obtained from this model can provide excellent reference for practical engineeringapplications. 展开更多
关键词 Chloride ions freeze-thaw cycles cracks
下载PDF
Repair of Second-Generation Recycled Fine Aggregate of Waste Concrete from Freeze-Thaw Environment by Carbonation Treatment
13
作者 Jie Huang Rongbin Jiang +1 位作者 Xiaobo Sun Yingyong Shuai 《Journal of Renewable Materials》 EI CAS 2024年第1期187-201,共15页
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ... The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential. 展开更多
关键词 Carbonation treatment REPAIR freeze-thaw cycles second-generation recycled fine aggregate
下载PDF
Reinforcement Learning in Process Industries:Review and Perspective
14
作者 Oguzhan Dogru Junyao Xie +6 位作者 Om Prakash Ranjith Chiplunkar Jansen Soesanto Hongtian Chen Kirubakaran Velswamy Fadi Ibrahim Biao Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期283-300,共18页
This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control ... This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries. 展开更多
关键词 process control process systems engineering reinforcement learning
下载PDF
Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization
15
作者 Chunliang Liu Jianhui Zhong +5 位作者 Ranran Wei Jiuxu Ruan Kaicong Wang Zhaoyou Zhu Yinglong Wang Limei Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期24-44,共21页
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ... This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes. 展开更多
关键词 Azeotrope separation process design Optimization algorithm process integration Dynamic control Entrainer selection
下载PDF
Spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice in multiple dimensions during 1979 to 2020
16
作者 Yu Guo Xiaoli Wang +1 位作者 He Xu Xiyong Hou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期102-114,共13页
Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertica... Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertical dimensions of Arctic sea ice and its asymmetry during the melt and freeze seasons are rarely quantified simultaneously based on multiple sources of the same long time series.In this study,the spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice were investigated from both the horizontal and vertical dimensions during 1979–2020 based on remote sensing and assimilation data.The results indicated that Arctic sea ice was declining at a remarkably high rate of–5.4×10^(4) km^(2)/a in sea ice area(SIA)and–2.2 cm/a in sea ice thickness(SIT)during 1979 to 2020,and the reduction of SIA and SIT was the largest in summer and the smallest in winter.Spatially,compared with other sub-regions,SIA showed a sharper declining trend in the Barents Sea,Kara Sea,and East Siberian Sea,while SIT presented a larger downward trend in the northern Canadian Archipelago,northern Greenland,and the East Siberian Sea.Regarding to the seasonal trend of sea ice on sub-region scale,the reduction rate of SIA exhibited an apparent spatial heterogeneity among seasons,especially in summer and winter,i.e.,the sub-regions linked to the open ocean exhibited a higher decline rate in winter;however,the other sub-regions blocked by the coastlines presented a greater decline rate in summer.For SIT,the sub-regions such as the Beaufort Sea,East Siberian Sea,Chukchi Sea,Central Arctic,and Canadian Archipelago always showed a higher downward rate in all seasons.Furthermore,a striking freeze-thaw asymmetry of Arctic sea ice was also detected.Comparing sea ice changes in different dimensions,sea ice over most regions in the Arctic showed an early retreat and rapid advance in the horizontal dimension but late melting and gradual freezing in the vertical dimension.The amount of sea ice melting and freezing was disequilibrium in the Arctic during the considered period,and the rate of sea ice melting was 0.3×10^(4) km^(2)/a and 0.01 cm/a higher than that of freezing in the horizontal and vertical dimensions,respectively.Moreover,there were notable shifts in the melting and freezing of Arctic sea ice in 1997/2003 and 2000/2004,respectively,in the horizontal/vertical dimension. 展开更多
关键词 Arctic sea ice sea ice area sea ice thickness spatiotemporal variation freeze-thaw asymmetry
下载PDF
NADARAYA-WATSON ESTIMATORS FOR REFLECTED STOCHASTIC PROCESSES
17
作者 韩月才 张丁文 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期143-160,共18页
We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed proces... We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology. 展开更多
关键词 reflected stochastic differential equation discretely observed process continuously observed process Nadaraya-Watson estimator asymptotic behavior
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
18
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 Convolutional neural networks(CNNs) deep learning image processing oscillation detection process industries
下载PDF
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
19
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted Gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
下载PDF
Dendritic spine degeneration:a primary mechanism in the aging process
20
作者 Gonzalo Flores Leonardo Aguilar-Hernández +3 位作者 Fernado García-Dolores Humberto Nicolini Andrea Judith Vázquez-Hernández Hiram Tendilla-Beltrán 《Neural Regeneration Research》 SCIE CAS 2025年第6期1696-1698,共3页
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w... Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023). 展开更多
关键词 AGING process STRESS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部