Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studie...Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.展开更多
At present,it is believed that the freezing point temperature of seawater is a function of salinity and pressure,and the freezing point is a key parameter in a coupled air-sea-ice system.Generally,empirical formulas o...At present,it is believed that the freezing point temperature of seawater is a function of salinity and pressure,and the freezing point is a key parameter in a coupled air-sea-ice system.Generally,empirical formulas or methods are used to calculate the freezing point of seawater.Especially in high-pressure situations,e.g.,under a thick ice sheet or ice shelf,the pressure term must be taken into account in the determination of seawater freezing point temperature.This study summarized various methods that have been used to calculate seawater freezing point with high pressure.The methods that were employed in two ocean-ice models were also assessed.We identified the disadvantages of these methods used in these two models and addressed the corresponding uncertainties of the freezing point temperature formulas.This study provides useful information on the calculation of the freezing point temperature in numerical modeling and indicates a need to investigate the sensitivity of numerical simulations to the uncertainties in the freezing point temperature in future.展开更多
The mean activity coefficient of 5, 10,15 , 20-tetrakis (P-methoxyl-O-sulfophenyl)porphyrin sodium in dilute aqueous solution has been determined in the modality range 0. 00547-0. 08871 mol · kg-1at 273. 2 K by t...The mean activity coefficient of 5, 10,15 , 20-tetrakis (P-methoxyl-O-sulfophenyl)porphyrin sodium in dilute aqueous solution has been determined in the modality range 0. 00547-0. 08871 mol · kg-1at 273. 2 K by the freezing-point depression method . The results of γ± are 0. 9945-0. 7695, it is in close agreement with that by isopiestic method.展开更多
Freezing is the most common method used to preserve and minimize loss in quality of catfish during storage. Since freezing is a heat transfer process, the design and selection of freezing equipment require knowledge o...Freezing is the most common method used to preserve and minimize loss in quality of catfish during storage. Since freezing is a heat transfer process, the design and selection of freezing equipment require knowledge of thermophysical properties such as freezing temperature, enthalpy of freezing, unfreezable water and specific heat. Channel catfish thermophysical properties at freezing temperature were determined using differential scanning calorimetry. Using the combination of Raoult's law and Classius-Clapeyron equations, the amount of unfreezable (bound water) was estimated to be 0.129 g H20 g^-1 During freezing (or melting), the specific heat increased from about 1.5 J g^-1 ℃^-1 to about 30.6 J g^-1 ℃^-1 It was found that freezing of catfish occur over a wide temperature range with the peak and incident freezing temperatures occurring at temperatures of-1.88 ℃ and -6.10 ℃, respectively. About 250 J g^-1 of heat have to be removed from catfish when it is to be frozen to -40 ℃. The implication is that any system that will be designed to freeze catfish must be able to remove 250 J g^-1 of heat.展开更多
文摘Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.
基金supported by the Major State Basic Research Development Program of China (Grant no.2016YFA0601804)supported by the National Natural Science Foundation of China (Grant no.41876220)+3 种基金supported by the National Natural Science Foundation of China (Grant no.41806216)“the Fundamental Research Funds for the Central Universities” (Grant nos.2017B04814, 2017B20714)the Fundamental Research Funds for the Central Universities (Grant no.2013B18020192)by Project funded by China Postdoctoral Science Foundation (Grant nos.2019T120379, 2018M630499)
文摘At present,it is believed that the freezing point temperature of seawater is a function of salinity and pressure,and the freezing point is a key parameter in a coupled air-sea-ice system.Generally,empirical formulas or methods are used to calculate the freezing point of seawater.Especially in high-pressure situations,e.g.,under a thick ice sheet or ice shelf,the pressure term must be taken into account in the determination of seawater freezing point temperature.This study summarized various methods that have been used to calculate seawater freezing point with high pressure.The methods that were employed in two ocean-ice models were also assessed.We identified the disadvantages of these methods used in these two models and addressed the corresponding uncertainties of the freezing point temperature formulas.This study provides useful information on the calculation of the freezing point temperature in numerical modeling and indicates a need to investigate the sensitivity of numerical simulations to the uncertainties in the freezing point temperature in future.
文摘The mean activity coefficient of 5, 10,15 , 20-tetrakis (P-methoxyl-O-sulfophenyl)porphyrin sodium in dilute aqueous solution has been determined in the modality range 0. 00547-0. 08871 mol · kg-1at 273. 2 K by the freezing-point depression method . The results of γ± are 0. 9945-0. 7695, it is in close agreement with that by isopiestic method.
文摘Freezing is the most common method used to preserve and minimize loss in quality of catfish during storage. Since freezing is a heat transfer process, the design and selection of freezing equipment require knowledge of thermophysical properties such as freezing temperature, enthalpy of freezing, unfreezable water and specific heat. Channel catfish thermophysical properties at freezing temperature were determined using differential scanning calorimetry. Using the combination of Raoult's law and Classius-Clapeyron equations, the amount of unfreezable (bound water) was estimated to be 0.129 g H20 g^-1 During freezing (or melting), the specific heat increased from about 1.5 J g^-1 ℃^-1 to about 30.6 J g^-1 ℃^-1 It was found that freezing of catfish occur over a wide temperature range with the peak and incident freezing temperatures occurring at temperatures of-1.88 ℃ and -6.10 ℃, respectively. About 250 J g^-1 of heat have to be removed from catfish when it is to be frozen to -40 ℃. The implication is that any system that will be designed to freeze catfish must be able to remove 250 J g^-1 of heat.