Behavior of structural elements under blast loading is different from that under usual loading conditions that are considered in conventional structural deigns. Cantilever slabs are more vulnerable than most other ele...Behavior of structural elements under blast loading is different from that under usual loading conditions that are considered in conventional structural deigns. Cantilever slabs are more vulnerable than most other elements under blast loads because of their shape. Understanding the blast behavior of cantilever slabs is useful in strengthening them against blast loads. In this paper, blast loading design envelopes for cantilever slabs are proposed using which, the blast behavior of conventional cantilever slabs can be identified. The paper describes the theories behind these envelopes and the way they can be applied to improve conventional designs. These envelopes have been prepared using numerical techniques. The theories used are accepted, verified and validated theories. The paper shows the possibility of converting a conventional cantilever slab design into impulsive regime design with minor adjustments to the structural design. It points out the importance of increasing slab thickness and controlling steel/concrete ratio for strengthening conventional cantilever slab designs and the requirement of reinforcement at top and bottom fibers.展开更多
文摘Behavior of structural elements under blast loading is different from that under usual loading conditions that are considered in conventional structural deigns. Cantilever slabs are more vulnerable than most other elements under blast loads because of their shape. Understanding the blast behavior of cantilever slabs is useful in strengthening them against blast loads. In this paper, blast loading design envelopes for cantilever slabs are proposed using which, the blast behavior of conventional cantilever slabs can be identified. The paper describes the theories behind these envelopes and the way they can be applied to improve conventional designs. These envelopes have been prepared using numerical techniques. The theories used are accepted, verified and validated theories. The paper shows the possibility of converting a conventional cantilever slab design into impulsive regime design with minor adjustments to the structural design. It points out the importance of increasing slab thickness and controlling steel/concrete ratio for strengthening conventional cantilever slab designs and the requirement of reinforcement at top and bottom fibers.