Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in stu...Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.展开更多
The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary...The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary eruptions in the solar system,pulsars,transient sources,and reionization of the early universe.This article introduces the HF-VHF frequency band multifunctional radio astronomical terminal system based on a dual-channel high-speed acquisition board with a frequency observation range of 1-250 MHz and a sampling rate of 500 Msps(Mega samples per second).The maximum quantization bit of the system is 14 bits,with a maximum time resolution of 0.1 s and a maximum spectral resolution of 16 kHz.The system combines spectral analysis of solar radio signals and recording of time-domain data of signals interfering with long baselines,and adopts a server-client separation mode to allow remote operation with separate permissions.It is used in the China-Malaysia joint astronomy project,which can carry out single-site observation of solar radio signals as well as interferometric observation of signals from multiple sites.展开更多
Smart devices have become an important entity for many applications in daily life activities. These devices have witnessed a rapid improvement in its technology to fulfill the increasingly diverse usage demands. In th...Smart devices have become an important entity for many applications in daily life activities. These devices have witnessed a rapid improvement in its technology to fulfill the increasingly diverse usage demands. In the meanwhile, rotating machinery vibration analysis based on low-cost sensors has gained a considerable attraction over the last few years. For a long time, the vibration analysis of machines has been accepted as an effective solution to detect and prevent failures in complex systems to avoid the sudden malfunction. The objective of this work is to use MEMS accelerometer measurements to monitor the different level of vibration of a machine. This work presents a new technique for rotating machinery vibration analysis. It uses Fast Fourier Transformation as a feature extraction algorithm and Fuzzy Logic System (FLS) as the classifier algorithm. A smartphone accelerometer is used to collect the data from the vibrating machine. The performance of the proposed technique is tested using data from different vibration resources at a different speed of operations. The results are discussed to illustrate the various vibration levels.展开更多
Based on seismic attenuation theory in a fluid-filled porous medium, we improve conventional methods of low-frequency shadow analysis (LFSA) and energy absorption analysis (EAA) and propose a high-precision freque...Based on seismic attenuation theory in a fluid-filled porous medium, we improve conventional methods of low-frequency shadow analysis (LFSA) and energy absorption analysis (EAA) and propose a high-precision frequency attenuation analysis technology. First, we introduce the method of three-parameter wavelet transform and the time-frequency focused criterion and develop a high-precision time-frequency analysis method based on an adaptive three-parameter wavelet transform, which has high time-frequency resolution with benefit to LFSA and can obtain a single-peaked spectrum with narrow side-lobes with benefit to EAA. Second, we correctly compute absorption coefficient by curve fitting based on the nonlinear Nelder-Mead algorithm and effectively improve EAA precision. Practical application results show that the proposed frequency attenuation analysis technology integrated with LFSA and EAA can effectively predict favorable zones of carbonate oolitic reservoir. Furthermore, reservoir prediction results based on LFSA correspond with EAA. The new technology can effectively improve reservoir prediction reliability and reduce exploration risk.展开更多
Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves...Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.展开更多
This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability cri...This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.展开更多
Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a mov...Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast (NE1, NE2), Central (C), Central North (CN1, CN2), Central East (CE1, CE2, CE3), Southeast (SE1, SE2, SE3, SE4), and Southwest (SW). The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80-270 mm (1-h to 24-h rainfall) and 108-390 mm (1-h to 24-h rainfall) for 20- and 100 yr, respectively. Minimum return levels were in the CN1 and NE1 regions, with values of 37-104 mm and 53-140 mm for 20 and 100 yr, respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1-24-h rainfall varied from -3-4 mm to -23-11 mm (- 10%-10%) for 20-yr events, reaching -6-26 mm (-10%-30%) and -10-133 mm (-10%-90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.展开更多
Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed suc...Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.展开更多
The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. Thi...The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.展开更多
When a stem is inserted into the femur during total hip arthroplasty, sufficient fixation depends on the surgeon’s experience. An objective method of evaluating whether the stem has been correctly fixed may aid clini...When a stem is inserted into the femur during total hip arthroplasty, sufficient fixation depends on the surgeon’s experience. An objective method of evaluating whether the stem has been correctly fixed may aid clinicians in their decision. We examined the relationship between the sound frequency caused by hammering the stem and the internal stress in artificial femurs, and evaluated the utility of sound frequency analysis to prevent intraoperative fracture. Surgeons inserted one of two types of cementless stems (SL-PLUS and modified CLS) using routine operational procedures into 13 artificial femurs. These are the standard Zweymüllers used in Europe. The difference is the lateral shape;SL-PLUS has holes for removal and the modified CLS has fins to prevent rotation. We estimated stress in the femur via finite element analysis, measured the hammering force, and recorded the sound of hammering for frequency analysis. Finite element analysis revealed that the hammering sound frequency decreased as the maximum stress increased. A decrease in frequency suggested that fixation was sufficient and that continued hammering would increase the risk of fracture. Thus, evaluation of the change in sound frequency during stem insertion may indicate when the hammering force should be reduced, thereby preventing intraoperative periprosthetic fractures. Further frequency change may also predict fractures prior to visual confirmation. We concluded that sound frequency analysis has potential as an objective evaluation method to help prevent intraoperative periprosthetic fractures during stem insertion.展开更多
Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic condi...Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism.Subsequently,based on the modified pseudo-rigid-body model,the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics.Finally,in combination with the finite element analysis software ANSYS,the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples.From the simulation results,the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size,section parameter,and characteristic parameter of material on mechanisms.The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms,the improvement of their dynamic properties and the expansion of their application range.展开更多
This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study are...This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.展开更多
Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently comp...Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently compared with failures of the stem fix in the femur. We investigated the possibility of evaluating whether fixation was acquired by frequency analysis of the hammering sound of implanting a cup into the acetabulum. The subjects were 11 patients (11 joints) who underwent total hip arthroplasty, biomechanical test materials, and orthopedic models. Surgeries and experiments were performed by orthopedists specialized in the hip. A system was constructed with a tablet PC and directional microphone, the peak frequency at which the amplitude reached the maximum was determined, and judgment processing (stable, unstable) of cup fixability was performed in real time. The stable maximum peak frequency observed in the clinical trials was 4.42 ± 4.02 kHz. The mean stable maximum peak frequency in the biomechanical tests was 4.46 ± 1.19 kHz in biomechanical test materials and 4.56 ± 2.02 kHz in orthopaedicmodels. When hammering was continued, the frequency leading to fracture decreased in both biomechanical test materials and orthopaedicmodels. In conclusion, in clinical trials and biomechanical studies, variation of the maximum peak frequency decreased when fixation was acquired and the frequency stabilized. It was suggested that this method can serve as a fixability evaluation method of acetabular cups because analysis can be performed in real time during surgery, for which prevention of intraoperative fracture can be expected.展开更多
To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statis...To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statistical analysis software,Yangzhou analyzer(2.2), regression analysis of Excel, which objected to local actual production, the study adopted the principle and method of basic knowledge and the frequency of using probability theory, and carried out statistical analysis on the rape field fertilizer experiment data by frequency analysis method, the rape yield after optimizing fertilizing amount was 1 732.4 kg/hm^2, the ranges of N, P and K optimal combinations were: N=210.36-149.64 kg/hm^2,P2O5=81.89-58.11 kg/hm^2, K2O=81.89-58.11 kg/hm^2,which was consistent with local actual production. This study was based on frequency analysis, using weighted average method to determine the production combinations of different yield objectives, hereinto, the combinations with high yield, high frequency of occurrence(dependable crop) and fertilizer-saving were viewed as the optimizing production measures, and they had the merits of increasing fertilization decision-making information, reducing or avoiding the risk of small probability event. The results of this study can solve the problem of abnormal values fertilizing amount and target yield recommended by non-typical fertilizer effect function, which did not accord with local actual production, caused by Yangzhou analyzer(2.2), regression analysis of Excel, and DPS statistical analysis software. For the fertilizer effect function equation established by regression analysis which did not reach significance level using variance analysis, whether the method can be adapted to for carrying out fertilization decision-making, recommending optimization combinations of N, P and K fertilizers and yield under optimized fertilizing amount should be further researched in future working practice.展开更多
Objective:Using Chinese patents in force to investigate the frequency and patterns of Chinese herbal extract combinations claiming to treat heart disease.Methods:Patent documents were retrieved from the official websi...Objective:Using Chinese patents in force to investigate the frequency and patterns of Chinese herbal extract combinations claiming to treat heart disease.Methods:Patent documents were retrieved from the official website of the State Intellectual Property Office of the People’s Republic China.Cluster,frequency,and fuzzy cluster analyses were applied.Results:A high number of patents in force included high-frequency herbs such as Salvia miltiorrhiza,Panax ginseng,and Panax notoginseng,as well as high-frequency herbal families such as Araliaceae,Leguminosae,Labiatae,and Umbelliferae.Herb pairs such as P.ginsengþOphiopogon japonicus,S.miltiorrhizaþDalbergia odorifera,and P.ginsengþSchisandra chinensis are also commonly used,as well as herbal family pairs such as AraliaceaeþLiliaceae,LauraceaeþLeguminosae,and AraliaceaeþSchisandraceae.Traditional treatment principles for preventing and treating heart diseases was most-commonly based on simultaneously treating the liver and heart and treating the lung and spleen secondarily for choosing herbal combinations.Conclusion:Most of the high-frequency Chinese herbs in the patents investigated belong to the high-frequency herbal families,and herb pairs were commonly selected to coincide with the commonly-used herbal family pairs.Low-frequency Chinese herbs were also used,but generally belonged to the high-frequency herbal families,and were therefore similar to the highfrequency herbs in terms of traditional categories of taste and channel entered.The results reflect the use of traditional principles of formula composition,and suggest that these principles may indeed be an effective guide for further research and development of Chinese herbal extract combinations to prevent and treat heart diseases.展开更多
The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of l...The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of lung cancers adenocarcinoma(ADC)and squamous cell carcinoma(SCC)from normal tissues.A total of 31 label-free micrographic images of three type of brain tissues were obtained using a confocal micro-Raman spectroscopic system.VRR spectra of the corresponding samples were synchronously collected using excitation wavelength of 532 nm from the same sites of the tissues.Using SFSA method,the difference in the randomness of spatial frequency structures in the micrograph images was analyzed using Gaussian functionfitting.The standard deviations,calculated from the spatial frequencies of the micrograph images were then analyzed using support vector machine(SVM)classifier.The key VRR biomolecularfingerprints of carotenoids,tryptophan,amide II,lipids and proteins(methylene/methyl groups)were also analyzed using SVM classifier.All three types of brain tissues were identified with high accuracy in the two approaches with high correlation.The results show that SFSA–VRR can potentially be a dual-modal method to provide new criteria for identifying the three types of human brain tissues,which are on-site,real-time and label-free and may improve the accuracy of brain biopsy.展开更多
L-moments are defined as linear combinations of probability-weighted moments, They are, virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional anal...L-moments are defined as linear combinations of probability-weighted moments, They are, virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional analysis. The traditional methods of determining the design wave heights for planning marine structures use data only from the site of interest. Regional frequency analysis gives a new approach to estimate quantile by use of the homogeneous neighborhood informatian. A regional frequency analysis based on L-moments with a case study of the California coast is presented. The significant wave height data for the California coast is offered by NDBC. A 6-site region without 46023 is considered to be a homogeneous region, whose optimal regional distribution is Pearson Ⅲ. The test is conducted by a simulation process. The regional quantile is compared with the at-site quantile, and it is shown that efficient neighborhood information can be used via regional frequency analysis to give a reasonable estimation of the site without enough historical data.展开更多
An unsupervised minimum mean square error FIR adaptive filtering (UAF) algorithm is proposed to estimate the system' s input signal. The algorithm only uses the system' s output signal and noise variance without r...An unsupervised minimum mean square error FIR adaptive filtering (UAF) algorithm is proposed to estimate the system' s input signal. The algorithm only uses the system' s output signal and noise variance without requiring knowledge of a reference signal. The frequency analysis shows that the UAF is a multi-spot bandpass filter with passing frequency determined by the system' s input signal. Namely, the UAF chooses the expected frequency and extremely restricts the unwanted fre- quency signal by using weight-updating scheme in time domain. However, the UAF presents the Gibbs phenomenon since the ideal filter is infinitely long which is unrealizable. The simulation and experimental results show that the UAF could effectively reduce the amplitude of the noise and im- prove the signal to noise ratio.展开更多
Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential eq...Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential equations. The relation between the local truncation error in time domain and the error in frequency domain is established, which is the basis for developing the error estimation methods. The error estimation methods for the digital simulation model constructed by using the Runge-Kutta algorithms and the linear multistep predictor-corrector algorithms are also given.展开更多
基金financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.
基金supported by National Natural Science Foundation of China(U2031133)National Key Research and Development Program of China(11941003)+4 种基金Applied Basic Research Program of Yunnan Province(2019FB009)Basic Research Program of Yunnan Province(202301AT070325)Square Kilometer Array(SKA)Project of the Ministry of Science and Technology of China(2020SKA0110202)International Partnership Program of the Chinese Academy of Sciences(114A11KYSB20200001)Kunming Municipal Foreign(International)Cooperation Base Project(GHJD-2021022).
文摘The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary eruptions in the solar system,pulsars,transient sources,and reionization of the early universe.This article introduces the HF-VHF frequency band multifunctional radio astronomical terminal system based on a dual-channel high-speed acquisition board with a frequency observation range of 1-250 MHz and a sampling rate of 500 Msps(Mega samples per second).The maximum quantization bit of the system is 14 bits,with a maximum time resolution of 0.1 s and a maximum spectral resolution of 16 kHz.The system combines spectral analysis of solar radio signals and recording of time-domain data of signals interfering with long baselines,and adopts a server-client separation mode to allow remote operation with separate permissions.It is used in the China-Malaysia joint astronomy project,which can carry out single-site observation of solar radio signals as well as interferometric observation of signals from multiple sites.
文摘Smart devices have become an important entity for many applications in daily life activities. These devices have witnessed a rapid improvement in its technology to fulfill the increasingly diverse usage demands. In the meanwhile, rotating machinery vibration analysis based on low-cost sensors has gained a considerable attraction over the last few years. For a long time, the vibration analysis of machines has been accepted as an effective solution to detect and prevent failures in complex systems to avoid the sudden malfunction. The objective of this work is to use MEMS accelerometer measurements to monitor the different level of vibration of a machine. This work presents a new technique for rotating machinery vibration analysis. It uses Fast Fourier Transformation as a feature extraction algorithm and Fuzzy Logic System (FLS) as the classifier algorithm. A smartphone accelerometer is used to collect the data from the vibrating machine. The performance of the proposed technique is tested using data from different vibration resources at a different speed of operations. The results are discussed to illustrate the various vibration levels.
基金sponsored by the National Natural Science Foundation of China (Grant No.40904035)
文摘Based on seismic attenuation theory in a fluid-filled porous medium, we improve conventional methods of low-frequency shadow analysis (LFSA) and energy absorption analysis (EAA) and propose a high-precision frequency attenuation analysis technology. First, we introduce the method of three-parameter wavelet transform and the time-frequency focused criterion and develop a high-precision time-frequency analysis method based on an adaptive three-parameter wavelet transform, which has high time-frequency resolution with benefit to LFSA and can obtain a single-peaked spectrum with narrow side-lobes with benefit to EAA. Second, we correctly compute absorption coefficient by curve fitting based on the nonlinear Nelder-Mead algorithm and effectively improve EAA precision. Practical application results show that the proposed frequency attenuation analysis technology integrated with LFSA and EAA can effectively predict favorable zones of carbonate oolitic reservoir. Furthermore, reservoir prediction results based on LFSA correspond with EAA. The new technology can effectively improve reservoir prediction reliability and reduce exploration risk.
基金the National Basic Research Program of China (Nos.2005 CB221504 and 2010CB226805)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT (No.09KF08)the Foundation of the Henan Educational Committee (No.2010 A440003)
文摘Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.
基金Supported by the Natural Science Foundation of Chongqing City (No. CSTC2004BB2165) and Research Foundation of Chongqing University of Posts and Telecommunications (No. A2005-47)
文摘This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.
基金supported by the National Basic Research(973)Program of China(Grant Nos.2013CB430205 and 2012CB955903)the National Natural Science Foundation of China(Grant Nos.41171406,41375099,41561124014 and 91337108)
文摘Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast (NE1, NE2), Central (C), Central North (CN1, CN2), Central East (CE1, CE2, CE3), Southeast (SE1, SE2, SE3, SE4), and Southwest (SW). The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80-270 mm (1-h to 24-h rainfall) and 108-390 mm (1-h to 24-h rainfall) for 20- and 100 yr, respectively. Minimum return levels were in the CN1 and NE1 regions, with values of 37-104 mm and 53-140 mm for 20 and 100 yr, respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1-24-h rainfall varied from -3-4 mm to -23-11 mm (- 10%-10%) for 20-yr events, reaching -6-26 mm (-10%-30%) and -10-133 mm (-10%-90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.
文摘Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.
基金supported by the UM Multi-Year Research Grant under Grant No.MYRG144(Y3-L2)-FST11-ZLM
文摘The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.
文摘When a stem is inserted into the femur during total hip arthroplasty, sufficient fixation depends on the surgeon’s experience. An objective method of evaluating whether the stem has been correctly fixed may aid clinicians in their decision. We examined the relationship between the sound frequency caused by hammering the stem and the internal stress in artificial femurs, and evaluated the utility of sound frequency analysis to prevent intraoperative fracture. Surgeons inserted one of two types of cementless stems (SL-PLUS and modified CLS) using routine operational procedures into 13 artificial femurs. These are the standard Zweymüllers used in Europe. The difference is the lateral shape;SL-PLUS has holes for removal and the modified CLS has fins to prevent rotation. We estimated stress in the femur via finite element analysis, measured the hammering force, and recorded the sound of hammering for frequency analysis. Finite element analysis revealed that the hammering sound frequency decreased as the maximum stress increased. A decrease in frequency suggested that fixation was sufficient and that continued hammering would increase the risk of fracture. Thus, evaluation of the change in sound frequency during stem insertion may indicate when the hammering force should be reduced, thereby preventing intraoperative periprosthetic fractures. Further frequency change may also predict fractures prior to visual confirmation. We concluded that sound frequency analysis has potential as an objective evaluation method to help prevent intraoperative periprosthetic fractures during stem insertion.
基金Supported by Fundamental Research Funds for the Central Universities of China(Grant Nos.2014QNB18,2015XKMS022)National Natural Science Foundation of China(Grant No.51475456)+1 种基金Priority Academic Programme Development of Jiangsu Higher Education Institutionsthe Visiting Scholar Foundation of China Scholarship Council
文摘Based on a modified pseudo-rigid-body model,the frequency characteristics and sensitivity of the large-deformation compliant mechanism are studied.Firstly,the pseudo-rigid-body model under the static and kinetic conditions is modified to enable the modified pseudo-rigid-body model to be more suitable for the dynamic analysis of the compliant mechanism.Subsequently,based on the modified pseudo-rigid-body model,the dynamic equations of the ordinary compliant four-bar mechanism are established using the analytical mechanics.Finally,in combination with the finite element analysis software ANSYS,the frequency characteristics and sensitivity of the compliant mechanism are analyzed by taking the compliant parallel-guiding mechanism and the compliant bistable mechanism as examples.From the simulation results,the dynamic characteristics of compliant mechanism are relatively sensitive to the structure size,section parameter,and characteristic parameter of material on mechanisms.The results could provide great theoretical significance and application values for the structural optimization of compliant mechanisms,the improvement of their dynamic properties and the expansion of their application range.
基金supported by the National Natural Science Foundation of China(Grants No.51779074 and 41371052)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501059)+3 种基金the National Key Research and Development Program of China(Grant No.2017YFC0404304)the Jiangsu Water Conservancy Science and Technology Project(Grant No.2017027)the Program for Outstanding Young Talents in Colleges and Universities of Anhui Province(Grant No.gxyq2018143)the Natural Science Foundation of Wanjiang University of Technology(Grant No.WG18030)
文摘This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.
文摘Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently compared with failures of the stem fix in the femur. We investigated the possibility of evaluating whether fixation was acquired by frequency analysis of the hammering sound of implanting a cup into the acetabulum. The subjects were 11 patients (11 joints) who underwent total hip arthroplasty, biomechanical test materials, and orthopedic models. Surgeries and experiments were performed by orthopedists specialized in the hip. A system was constructed with a tablet PC and directional microphone, the peak frequency at which the amplitude reached the maximum was determined, and judgment processing (stable, unstable) of cup fixability was performed in real time. The stable maximum peak frequency observed in the clinical trials was 4.42 ± 4.02 kHz. The mean stable maximum peak frequency in the biomechanical tests was 4.46 ± 1.19 kHz in biomechanical test materials and 4.56 ± 2.02 kHz in orthopaedicmodels. When hammering was continued, the frequency leading to fracture decreased in both biomechanical test materials and orthopaedicmodels. In conclusion, in clinical trials and biomechanical studies, variation of the maximum peak frequency decreased when fixation was acquired and the frequency stabilized. It was suggested that this method can serve as a fixability evaluation method of acetabular cups because analysis can be performed in real time during surgery, for which prevention of intraoperative fracture can be expected.
基金supported by National Natural Science Foundation of China(61304263,61233007)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Arid
基金Supported by Fiscal Subsidy Project Fund of National Soil Testing and Formulated Fertilization(Yun Cai Nong[2009]2045)~~
文摘To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statistical analysis software,Yangzhou analyzer(2.2), regression analysis of Excel, which objected to local actual production, the study adopted the principle and method of basic knowledge and the frequency of using probability theory, and carried out statistical analysis on the rape field fertilizer experiment data by frequency analysis method, the rape yield after optimizing fertilizing amount was 1 732.4 kg/hm^2, the ranges of N, P and K optimal combinations were: N=210.36-149.64 kg/hm^2,P2O5=81.89-58.11 kg/hm^2, K2O=81.89-58.11 kg/hm^2,which was consistent with local actual production. This study was based on frequency analysis, using weighted average method to determine the production combinations of different yield objectives, hereinto, the combinations with high yield, high frequency of occurrence(dependable crop) and fertilizer-saving were viewed as the optimizing production measures, and they had the merits of increasing fertilization decision-making information, reducing or avoiding the risk of small probability event. The results of this study can solve the problem of abnormal values fertilizing amount and target yield recommended by non-typical fertilizer effect function, which did not accord with local actual production, caused by Yangzhou analyzer(2.2), regression analysis of Excel, and DPS statistical analysis software. For the fertilizer effect function equation established by regression analysis which did not reach significance level using variance analysis, whether the method can be adapted to for carrying out fertilization decision-making, recommending optimization combinations of N, P and K fertilizers and yield under optimized fertilizing amount should be further researched in future working practice.
文摘Objective:Using Chinese patents in force to investigate the frequency and patterns of Chinese herbal extract combinations claiming to treat heart disease.Methods:Patent documents were retrieved from the official website of the State Intellectual Property Office of the People’s Republic China.Cluster,frequency,and fuzzy cluster analyses were applied.Results:A high number of patents in force included high-frequency herbs such as Salvia miltiorrhiza,Panax ginseng,and Panax notoginseng,as well as high-frequency herbal families such as Araliaceae,Leguminosae,Labiatae,and Umbelliferae.Herb pairs such as P.ginsengþOphiopogon japonicus,S.miltiorrhizaþDalbergia odorifera,and P.ginsengþSchisandra chinensis are also commonly used,as well as herbal family pairs such as AraliaceaeþLiliaceae,LauraceaeþLeguminosae,and AraliaceaeþSchisandraceae.Traditional treatment principles for preventing and treating heart diseases was most-commonly based on simultaneously treating the liver and heart and treating the lung and spleen secondarily for choosing herbal combinations.Conclusion:Most of the high-frequency Chinese herbs in the patents investigated belong to the high-frequency herbal families,and herb pairs were commonly selected to coincide with the commonly-used herbal family pairs.Low-frequency Chinese herbs were also used,but generally belonged to the high-frequency herbal families,and were therefore similar to the highfrequency herbs in terms of traditional categories of taste and channel entered.The results reflect the use of traditional principles of formula composition,and suggest that these principles may indeed be an effective guide for further research and development of Chinese herbal extract combinations to prevent and treat heart diseases.
基金This research is supported by The Air Force Medical Center,China and in part of The Institute for Ultrafast Spectroscopy and Lasers(IUSL),the City College of the City University of New York.The authors would like to thank Mr.C.Y.Zhang,Mr.M.Z.Fan and Dr.X.H.Ni for their assistance in the experiments and suggestions concerning this paper.
文摘The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of lung cancers adenocarcinoma(ADC)and squamous cell carcinoma(SCC)from normal tissues.A total of 31 label-free micrographic images of three type of brain tissues were obtained using a confocal micro-Raman spectroscopic system.VRR spectra of the corresponding samples were synchronously collected using excitation wavelength of 532 nm from the same sites of the tissues.Using SFSA method,the difference in the randomness of spatial frequency structures in the micrograph images was analyzed using Gaussian functionfitting.The standard deviations,calculated from the spatial frequencies of the micrograph images were then analyzed using support vector machine(SVM)classifier.The key VRR biomolecularfingerprints of carotenoids,tryptophan,amide II,lipids and proteins(methylene/methyl groups)were also analyzed using SVM classifier.All three types of brain tissues were identified with high accuracy in the two approaches with high correlation.The results show that SFSA–VRR can potentially be a dual-modal method to provide new criteria for identifying the three types of human brain tissues,which are on-site,real-time and label-free and may improve the accuracy of brain biopsy.
基金This research was financially supported bythe National Natural Science Foundation of China (Grant No.50279028)
文摘L-moments are defined as linear combinations of probability-weighted moments, They are, virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional analysis. The traditional methods of determining the design wave heights for planning marine structures use data only from the site of interest. Regional frequency analysis gives a new approach to estimate quantile by use of the homogeneous neighborhood informatian. A regional frequency analysis based on L-moments with a case study of the California coast is presented. The significant wave height data for the California coast is offered by NDBC. A 6-site region without 46023 is considered to be a homogeneous region, whose optimal regional distribution is Pearson Ⅲ. The test is conducted by a simulation process. The regional quantile is compared with the at-site quantile, and it is shown that efficient neighborhood information can be used via regional frequency analysis to give a reasonable estimation of the site without enough historical data.
文摘An unsupervised minimum mean square error FIR adaptive filtering (UAF) algorithm is proposed to estimate the system' s input signal. The algorithm only uses the system' s output signal and noise variance without requiring knowledge of a reference signal. The frequency analysis shows that the UAF is a multi-spot bandpass filter with passing frequency determined by the system' s input signal. Namely, the UAF chooses the expected frequency and extremely restricts the unwanted fre- quency signal by using weight-updating scheme in time domain. However, the UAF presents the Gibbs phenomenon since the ideal filter is infinitely long which is unrealizable. The simulation and experimental results show that the UAF could effectively reduce the amplitude of the noise and im- prove the signal to noise ratio.
基金This project was supported by the National Natural Science Foundation of China (No. 19871080).
文摘Error analysis methods in frequency domain are developed in this paper for determining the characteristic root and transfer function errors when the linear multipass algorithms are used to solve linear differential equations. The relation between the local truncation error in time domain and the error in frequency domain is established, which is the basis for developing the error estimation methods. The error estimation methods for the digital simulation model constructed by using the Runge-Kutta algorithms and the linear multistep predictor-corrector algorithms are also given.