High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case...High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.展开更多
To estimate the motion parameters of a moving target before its passing by the closest point of approach (CPA) point in a low frequency analyzing and recording (LOFAR) field, an error-free theoretical method based...To estimate the motion parameters of a moving target before its passing by the closest point of approach (CPA) point in a low frequency analyzing and recording (LOFAR) field, an error-free theoretical method based on the joint measurement of target radiated noise's amplitude and frequency was presented. First, the error-free theoretical equations for target characteristic frequency, absolute velocity, the CPA, and amplitude of the radiation noise were derived by three equal interval measured values of the target amplitude and frequency. Then, the method to improve the calculation accuracy was given. Finally, the simulation and experiments were conducted in the air and showed the correctness of this method. By using one single piece of LOFAR, this method can calculate four target parameters and the relative error of each estimated parameter is less than 10%.展开更多
基金the Austrian Academy of Sciences(OeAW)for funding the landslide monitoring project for several yearsthe Austrian Federal Railways(OBB)for the funding of the geogrid monitoring project,especially the participating departments of OBB-Infrastruktur AG:Tunneling,Surveying and Data Management,Research and Development
文摘High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.
基金Project supported by the National Natural Science Foundation of China (No. 51209173)
文摘To estimate the motion parameters of a moving target before its passing by the closest point of approach (CPA) point in a low frequency analyzing and recording (LOFAR) field, an error-free theoretical method based on the joint measurement of target radiated noise's amplitude and frequency was presented. First, the error-free theoretical equations for target characteristic frequency, absolute velocity, the CPA, and amplitude of the radiation noise were derived by three equal interval measured values of the target amplitude and frequency. Then, the method to improve the calculation accuracy was given. Finally, the simulation and experiments were conducted in the air and showed the correctness of this method. By using one single piece of LOFAR, this method can calculate four target parameters and the relative error of each estimated parameter is less than 10%.