Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum ...Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.展开更多
The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response a...The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.展开更多
In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series conn...In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.展开更多
This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400...This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.展开更多
The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This p...The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.展开更多
Total harmonic distortion (THD) is one of the key technical indexes of inverter output voltage. Optimization o f switching points and filter parameters could ensure the switching-point-preset sinusoidal pulse width mo...Total harmonic distortion (THD) is one of the key technical indexes of inverter output voltage. Optimization o f switching points and filter parameters could ensure the switching-point-preset sinusoidal pulse width modulation (SPWM) inverters with low harmonyic content in theory.The THD value would be increased by switching time delay of power devices and control circuit. A new control coecuit with delay time compensation is presented in this paper. With this control scheme, the output of the inverter could be basically identified with the theory given.Test results of experimental circuit verify that the control circuit presented in this paper is feasible. The THD of the inverter output voltage could be reduced to a certain extent by this method.展开更多
This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also p...This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also possesses hybridmode control functions at the same time.Due to the presence of the zero-current detection circuit,the converter can switch freely between the two operating modes without the need for an external mode selection circuit,which further reduces the design difficulty and chip area.The converter for the application of high power efficiency and wide current range is used to generate the voltage of 0.6–3.0 V with a battery source of 3.3–5.0 V,while the load current range is 0.05–2 A.The circuit can work in continuous conduction mode with constant frequency in high load current range.In addition,a stable output voltage can be obtained with small voltage ripple.In pace with the load current decreases to a critical value,the converter transforms into the discontinuous conduction mode smoothly.As the switching period increases,the switching loss decreases,which can significantly improve the conversion efficiency.The proposed AOT controlled valley current mode buck converter is integrated with standard 0.18μm process and the simulation results show that the converter provides well-loaded regulations with power efficiency over 95%.When the circuit switches between the two conduction modes drastically,the response time can be controlled within 30μs.The undershoot voltage is controlled within 25 mV under a large current hopping range.展开更多
A new method of using dynamic equalization technology to realize the maximum energy storage utilization was presented to overcome the influence of the disaccord among units of series super capacitor (SC) bank and en...A new method of using dynamic equalization technology to realize the maximum energy storage utilization was presented to overcome the influence of the disaccord among units of series super capacitor (SC) bank and ensure that the units could work safely. By considering in combination with the high specific power, low working voltage, wide voltage working range and noulinear external characteristics, we present constant duty ratio pulse frequency modulation mode and fuzzy control method based on state prediction in the active equalization circuit and accomplish the software and hardware design for the equalization system. The simulation analysis and experiment results of constant current muhi-cycle and variable current multi-cycle charge-discharge process verify the validity of the design.展开更多
This paper is concerned with two popular and powerful methods in electrical drive applications:fieldoriented control(FOC)and space vector modulation(SVM).The proposed FOC-SVM method is incorporated with a predictive c...This paper is concerned with two popular and powerful methods in electrical drive applications:fieldoriented control(FOC)and space vector modulation(SVM).The proposed FOC-SVM method is incorporated with a predictive current control(PCC)-based technique.The suggested method estimates the desirable electrical torque to track mechanical torque at a fixed speed operation of permanent magnet synchronous motor(PMSM).The estimated torque is used to calculate the reference current based on FOC.In order to improve the performance of the traditional SVM,a PCC method is established as a switching pattern modifier.Therefore,PCC-based SVM is employed to further minimize the torque ripples and transient response.The performance of the controller is evaluated in terms of torque and current ripple and transient response to step variations of the torque command.The proposed method has been verified with MATLAB-Simulink model.Simulation results confirm the ability of this technique in minimizing the torque and speed ripples and fixing switching frequency,simultaneously.However,it is sensitive to parameter changes.展开更多
基金Funded by the National Natural Science Foundation of China(No.60974049)the Science and Technology Support Industrial Project of Jiangsu Province(No.BZ2008031,No.BE2008074,and No.BE2009090)+1 种基金the Nantong International Cooperative Project(No.W2009003)the Natural Science Foundation of Nantong University(No.08Z022 and No.08Z025).
文摘Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.
文摘The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.
文摘In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.
基金supported by the Natural Science Foundation for Young Scientists of Shanxi Province,China(No.52007154).
文摘This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.
文摘The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.
文摘Total harmonic distortion (THD) is one of the key technical indexes of inverter output voltage. Optimization o f switching points and filter parameters could ensure the switching-point-preset sinusoidal pulse width modulation (SPWM) inverters with low harmonyic content in theory.The THD value would be increased by switching time delay of power devices and control circuit. A new control coecuit with delay time compensation is presented in this paper. With this control scheme, the output of the inverter could be basically identified with the theory given.Test results of experimental circuit verify that the control circuit presented in this paper is feasible. The THD of the inverter output voltage could be reduced to a certain extent by this method.
基金supported by the National Natural Science Foundation of China(No.61974116)。
文摘This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also possesses hybridmode control functions at the same time.Due to the presence of the zero-current detection circuit,the converter can switch freely between the two operating modes without the need for an external mode selection circuit,which further reduces the design difficulty and chip area.The converter for the application of high power efficiency and wide current range is used to generate the voltage of 0.6–3.0 V with a battery source of 3.3–5.0 V,while the load current range is 0.05–2 A.The circuit can work in continuous conduction mode with constant frequency in high load current range.In addition,a stable output voltage can be obtained with small voltage ripple.In pace with the load current decreases to a critical value,the converter transforms into the discontinuous conduction mode smoothly.As the switching period increases,the switching loss decreases,which can significantly improve the conversion efficiency.The proposed AOT controlled valley current mode buck converter is integrated with standard 0.18μm process and the simulation results show that the converter provides well-loaded regulations with power efficiency over 95%.When the circuit switches between the two conduction modes drastically,the response time can be controlled within 30μs.The undershoot voltage is controlled within 25 mV under a large current hopping range.
基金the National High Technology Research and Development Programme of China(No.2002AA001028)the Tenth Five-year Industry Item of the Tackling Key Problem of Heilongjiang Province(No.CA02A201)
文摘A new method of using dynamic equalization technology to realize the maximum energy storage utilization was presented to overcome the influence of the disaccord among units of series super capacitor (SC) bank and ensure that the units could work safely. By considering in combination with the high specific power, low working voltage, wide voltage working range and noulinear external characteristics, we present constant duty ratio pulse frequency modulation mode and fuzzy control method based on state prediction in the active equalization circuit and accomplish the software and hardware design for the equalization system. The simulation analysis and experiment results of constant current muhi-cycle and variable current multi-cycle charge-discharge process verify the validity of the design.
文摘This paper is concerned with two popular and powerful methods in electrical drive applications:fieldoriented control(FOC)and space vector modulation(SVM).The proposed FOC-SVM method is incorporated with a predictive current control(PCC)-based technique.The suggested method estimates the desirable electrical torque to track mechanical torque at a fixed speed operation of permanent magnet synchronous motor(PMSM).The estimated torque is used to calculate the reference current based on FOC.In order to improve the performance of the traditional SVM,a PCC method is established as a switching pattern modifier.Therefore,PCC-based SVM is employed to further minimize the torque ripples and transient response.The performance of the controller is evaluated in terms of torque and current ripple and transient response to step variations of the torque command.The proposed method has been verified with MATLAB-Simulink model.Simulation results confirm the ability of this technique in minimizing the torque and speed ripples and fixing switching frequency,simultaneously.However,it is sensitive to parameter changes.