Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control mode...Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.展开更多
The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stat...The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.展开更多
A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are sele...A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.展开更多
Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different...Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.展开更多
Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based ...Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.展开更多
A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient...A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.展开更多
To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied...To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations.展开更多
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r...In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.展开更多
单边短初级长次级直线感应电机己普遍应用于低速磁悬浮的驱动系统。由于在动态纵向边端效应影响下等效电路不对称,单边直线感应电机(single-sided linear inductionmotor,SLIM)的一些参数非线性变化。传统的应用于旋转电机的无速度...单边短初级长次级直线感应电机己普遍应用于低速磁悬浮的驱动系统。由于在动态纵向边端效应影响下等效电路不对称,单边直线感应电机(single-sided linear inductionmotor,SLIM)的一些参数非线性变化。传统的应用于旋转电机的无速度传感器方法不再适用。首先分析了SLIM的M/T轴等效电路,选择次级磁链作为速度观测器状态变量。根据李雅普诺夫系统稳定性判据,推导出适用于SLIM的无速度传感器辨识;然后,采用反馈广义积分观测器控制稳态辨识速度的双幅脉振幅值;引入虚拟期望变量(virtualdesiredvariable,VDV)法,利用估算速度参与SLIM的恒滑差频率矢量控制。仿真与实验对所提控制算法的有效性和实用性进行了验证,所得结论可为磁悬浮的无速度传感器控制提供参考。展开更多
The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequenc...The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequency as the independent variable.The frequency-speed control model of USM system is developed,thus laying foundation for the motor high performance control.The least square method and the extended least square method are used to identify the model.By comparing the results of the identification and measurement,and fitting the time-varying parameters of the model,one can show that the model obtained by using the extended least square method is reasonable and possesses high accuracy.Finally,the frequency-speed control model of USM contains the nonlinear information.展开更多
A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct...A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.展开更多
In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is cal...In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is calculated in finite elements for a variable frequency speed control motor before and after optimization. Finally, no-load current and operation performance before and after optimization are obtained and the two results are contrasted.展开更多
To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,an...To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.展开更多
Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many...Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many different controllers including fuzzy logic controller (FLC) with neglecting core loss have been designed to control the speed of induction motor. The outcome of investigation about the effect of core loss on indirect field oriented control (IFOC) has been concluded that the actual flux and torque are not reached to the reference flux and torque if core loss is neglected. Thus, the purpose of this paper is to propose a fuzzy logic speed controller of induction motor where flux and torque decoupling strategy is decoupled in terms of magnetizing current instead of stator current to alleviate the effects of core loss. The performances of proposed fuzzy-logic-based controller have been verified by computer simulation. The simulation of speed control of IM using PI and FLC are performed. The simulation study for high-performance control of IM drive shows the superiority of the proposed fuzzy logic controller over the conventional PI controller.展开更多
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic ...Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.展开更多
In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives in...In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives include lower cost,increased reliability,reduced hardware complexity,better noise immunity,and less maintenance requirements.With the development of modern industrial automation,more advanced sensorless control strategies are needed to meet the requirements of applications.For sensorless motor drives at low-and zero-speed operation,inverter nonlinearities and motor parameter variation have significant impact on the stability of control system.Meanwhile,high observer’s bandwidth is required in high-speed region.This paper introduces the state of art of recent progress in sensorless AC motor drives.In addition,this paper presents the sensorless control strategies we investigated for practical industrial and household applications.Both advanced sensorless drives of induction motor(IM)and permanent magnet synchronous motor(PMSM)are presented in this paper.展开更多
The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the eff...The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers.展开更多
基金supported by the National Natural Science Foundation of China(No.U1304501)
文摘Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.
文摘The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.
文摘A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.
文摘Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.
基金the Tenth-Five-Year Nuclear Energy Development of the Commission of Science and TechnologyNational Defense Industry of the China National Nuclear Corporation
文摘Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.
文摘A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.
基金National Natural Science Foundation of China(No.61461023)Gansu Provincial Department of Education Project(No.2016B-036)
文摘To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations.
文摘In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.
文摘单边短初级长次级直线感应电机己普遍应用于低速磁悬浮的驱动系统。由于在动态纵向边端效应影响下等效电路不对称,单边直线感应电机(single-sided linear inductionmotor,SLIM)的一些参数非线性变化。传统的应用于旋转电机的无速度传感器方法不再适用。首先分析了SLIM的M/T轴等效电路,选择次级磁链作为速度观测器状态变量。根据李雅普诺夫系统稳定性判据,推导出适用于SLIM的无速度传感器辨识;然后,采用反馈广义积分观测器控制稳态辨识速度的双幅脉振幅值;引入虚拟期望变量(virtualdesiredvariable,VDV)法,利用估算速度参与SLIM的恒滑差频率矢量控制。仿真与实验对所提控制算法的有效性和实用性进行了验证,所得结论可为磁悬浮的无速度传感器控制提供参考。
基金supported by the National Natural Science Foundation of China(No.U1304501)
文摘The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequency as the independent variable.The frequency-speed control model of USM system is developed,thus laying foundation for the motor high performance control.The least square method and the extended least square method are used to identify the model.By comparing the results of the identification and measurement,and fitting the time-varying parameters of the model,one can show that the model obtained by using the extended least square method is reasonable and possesses high accuracy.Finally,the frequency-speed control model of USM contains the nonlinear information.
文摘A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.
文摘In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is calculated in finite elements for a variable frequency speed control motor before and after optimization. Finally, no-load current and operation performance before and after optimization are obtained and the two results are contrasted.
基金This research was funded by the Hebei Science and Technology Support Program Project(19273703D)the Hebei Higher Education Science and Technology Research Project(ZD2020318).
文摘To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.
文摘Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many different controllers including fuzzy logic controller (FLC) with neglecting core loss have been designed to control the speed of induction motor. The outcome of investigation about the effect of core loss on indirect field oriented control (IFOC) has been concluded that the actual flux and torque are not reached to the reference flux and torque if core loss is neglected. Thus, the purpose of this paper is to propose a fuzzy logic speed controller of induction motor where flux and torque decoupling strategy is decoupled in terms of magnetizing current instead of stator current to alleviate the effects of core loss. The performances of proposed fuzzy-logic-based controller have been verified by computer simulation. The simulation of speed control of IM using PI and FLC are performed. The simulation study for high-performance control of IM drive shows the superiority of the proposed fuzzy logic controller over the conventional PI controller.
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
基金Open Fund Project of State Key Laboratory of Large Electric Transmission Systems and Equipment Technology(No.2012AA052903)
文摘Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.
基金This work was supported by the Research Fund for the National Key Research and Development Program(2016YFE0102800).
文摘In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives include lower cost,increased reliability,reduced hardware complexity,better noise immunity,and less maintenance requirements.With the development of modern industrial automation,more advanced sensorless control strategies are needed to meet the requirements of applications.For sensorless motor drives at low-and zero-speed operation,inverter nonlinearities and motor parameter variation have significant impact on the stability of control system.Meanwhile,high observer’s bandwidth is required in high-speed region.This paper introduces the state of art of recent progress in sensorless AC motor drives.In addition,this paper presents the sensorless control strategies we investigated for practical industrial and household applications.Both advanced sensorless drives of induction motor(IM)and permanent magnet synchronous motor(PMSM)are presented in this paper.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No.2006AA09Z215)
文摘The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers.