In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established und...In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established under irradiation in frequency modulation. Based on this expression, an electrical model of the intrinsic recombination velocity at the junction is presented.展开更多
Frequency modulation(FM)-to-amplitude modulation(AM) conversion is an important factor that affects the time±power curve of inertial confinement fusion(ICF) high-power laser facilities. This conversion can impact...Frequency modulation(FM)-to-amplitude modulation(AM) conversion is an important factor that affects the time±power curve of inertial confinement fusion(ICF) high-power laser facilities. This conversion can impact uniform compression and increase the risk of damage to optics. However, the dispersive grating used in the smoothing by spectral dispersion technology will introduce a temporal delay and can spatially smooth the target. The combined effect of the dispersive grating and the focusing lens is equivalent to a Gaussian low-pass filter, which is equivalent to 8 GHz bandwidth and can reduce the intensity modulation on the target to below 5% with 0.3 nm @ 3 GHz + 20 GHz spectrum phase modulation. The results play an important role in the testing and evaluating of the FM-to-AM on the final optics and the target, which is beneficial for comprehensively evaluating the load capacity of the facility and isentropic compression experiment for ICF.展开更多
To generate high-frequency radio frequency(RF) vector signals, a vector signal generation method by optical frequency sextupling using a dual-parallel modulator is proposed. The method modulates vector signal on +3 rd...To generate high-frequency radio frequency(RF) vector signals, a vector signal generation method by optical frequency sextupling using a dual-parallel modulator is proposed. The method modulates vector signal on +3 rd order optical sideband and local oscillator(LO) signal on-3 rd order sideband using the intermodulation process in the DPMZM. After suppressing of the optical carrier and other sidebands through proper adjustment for modulator biases and modulation index, a frequency sextupled millimeter-wave vector signal can be generated after photodetection. The frequency sextupling will lower the bandwidth of the modulator, the local oscillator and the driving circuits. In addition, the phase of generated signal is not distorted after detection, and the power fading after fiber transmission can be avoided. In the simulation, a 500-MSym/s QPSK signal at 60 GHz is generated by 10-GHz drive signal. After travelling over fiber with length of 20/30/40-km, receiver power penalty keeps below 2.5 dB.展开更多
This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuit...This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuity equation for the density of minority carriers generated in the base, by a monochromatic wavelength illumination (<i>λ</i>), with boundary conditions that impose recombination velocities (<i>Sf</i>) and (<i>Sb</i>) respectively at the junction and back surface, is resolved. The ac photocurrent is deduced and studied according to the recombination velocity at the junction, to extract the mathematical expressions of recombination velocity (<i>Sb</i>). By the graphic technique of comparing the two expressions obtained, depending on the thickness (<i>H</i>) of the base, for each frequency, the optimum thickness (Hopt) is obtained. It is then modeled according to the frequency, at the long wavelengths of the incident light. Thus, Hopt decreases due to the low relaxation time of minority carriers, when the frequency of modulation of incident light increases.展开更多
In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by ...In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.展开更多
An analytic solution derived by multisection model to the small-signal frequency response (SSFR) of wavelength conversion based on cross-gain modulation (XGM) in semiconductor optical amplifiers (SOAs) is presen...An analytic solution derived by multisection model to the small-signal frequency response (SSFR) of wavelength conversion based on cross-gain modulation (XGM) in semiconductor optical amplifiers (SOAs) is presented. The result contains details that can affect the characteristics of SSFR significantly more than previous ones.展开更多
近年来,随着智能驾驶技术的不断发展,毫米波雷达作为汽车安全控制系统的核心组件受到了广泛关注。时分复用(TDM)多输入多输出(MIMO)调频连续波(FMCW)雷达因具有低硬件成本和高角度分辨率的优势而被广泛应用于汽车雷达,但TDMMIMO在实际...近年来,随着智能驾驶技术的不断发展,毫米波雷达作为汽车安全控制系统的核心组件受到了广泛关注。时分复用(TDM)多输入多输出(MIMO)调频连续波(FMCW)雷达因具有低硬件成本和高角度分辨率的优势而被广泛应用于汽车雷达,但TDMMIMO在实际应用中还存在对运动目标检测易出现速度模糊和角度模糊问题,导致检测误差变大,对于自动驾驶场景存在一定的安全隐患。为解决上述TDM MIMO FMCW雷达存在检测误差高的问题,提出了在多普勒模糊下的FMCW MIMO雷达目标参数估计方法,在不增加额外硬件开销的前提下,可确保算法在低复杂度下提升监测的时效性,解决了速度模糊和相位偏移问题;利用加Kaiser窗FFT波束形成方法对目标角度进行测量,从而得到更精准的目标信息。仿真和实验结果验证了所提方法的有效性。展开更多
本文提出了一种双模式调制技术,以提高宽负载范围内降压型DC-DC转换器的转换效率。采用自适应导通时间电路(AOT)和斜坡信号VRAMP产生电路来维持转换器连续导通时间(CCM)工作模式下开关频率基本稳定;利用过零检测电路来检测电感电流,当...本文提出了一种双模式调制技术,以提高宽负载范围内降压型DC-DC转换器的转换效率。采用自适应导通时间电路(AOT)和斜坡信号VRAMP产生电路来维持转换器连续导通时间(CCM)工作模式下开关频率基本稳定;利用过零检测电路来检测电感电流,当电感电流过零时,能及时关断续流管,降低开关损耗,进一步提升轻载转换效率。该DC-DC基于SMIC 0.18 um BCD工艺进行电路仿真验证,该电路可在0~3A宽负载范围内正常工作,在输入电压3~5V范围内,PFM模式下输出电压纹波小于5.2mV,1m A负载下转换效率为87.37%。在PWM模式下输出电压纹波小于2.8mV,3A负载下最低转换效率为84.24%。峰值效率可达94.91%,全负载范围内转换效率大于84%。展开更多
文摘In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established under irradiation in frequency modulation. Based on this expression, an electrical model of the intrinsic recombination velocity at the junction is presented.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA25020303)。
文摘Frequency modulation(FM)-to-amplitude modulation(AM) conversion is an important factor that affects the time±power curve of inertial confinement fusion(ICF) high-power laser facilities. This conversion can impact uniform compression and increase the risk of damage to optics. However, the dispersive grating used in the smoothing by spectral dispersion technology will introduce a temporal delay and can spatially smooth the target. The combined effect of the dispersive grating and the focusing lens is equivalent to a Gaussian low-pass filter, which is equivalent to 8 GHz bandwidth and can reduce the intensity modulation on the target to below 5% with 0.3 nm @ 3 GHz + 20 GHz spectrum phase modulation. The results play an important role in the testing and evaluating of the FM-to-AM on the final optics and the target, which is beneficial for comprehensively evaluating the load capacity of the facility and isentropic compression experiment for ICF.
基金Sponsored by the Programme of Introducing Talents of Discipline to Universities(Grant No.B08038)
文摘To generate high-frequency radio frequency(RF) vector signals, a vector signal generation method by optical frequency sextupling using a dual-parallel modulator is proposed. The method modulates vector signal on +3 rd order optical sideband and local oscillator(LO) signal on-3 rd order sideband using the intermodulation process in the DPMZM. After suppressing of the optical carrier and other sidebands through proper adjustment for modulator biases and modulation index, a frequency sextupled millimeter-wave vector signal can be generated after photodetection. The frequency sextupling will lower the bandwidth of the modulator, the local oscillator and the driving circuits. In addition, the phase of generated signal is not distorted after detection, and the power fading after fiber transmission can be avoided. In the simulation, a 500-MSym/s QPSK signal at 60 GHz is generated by 10-GHz drive signal. After travelling over fiber with length of 20/30/40-km, receiver power penalty keeps below 2.5 dB.
文摘This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuity equation for the density of minority carriers generated in the base, by a monochromatic wavelength illumination (<i>λ</i>), with boundary conditions that impose recombination velocities (<i>Sf</i>) and (<i>Sb</i>) respectively at the junction and back surface, is resolved. The ac photocurrent is deduced and studied according to the recombination velocity at the junction, to extract the mathematical expressions of recombination velocity (<i>Sb</i>). By the graphic technique of comparing the two expressions obtained, depending on the thickness (<i>H</i>) of the base, for each frequency, the optimum thickness (Hopt) is obtained. It is then modeled according to the frequency, at the long wavelengths of the incident light. Thus, Hopt decreases due to the low relaxation time of minority carriers, when the frequency of modulation of incident light increases.
基金supported by the National High Technology Research and Development Program(973)of China(Grant No.2010CB328300)National Natural Science Foundation of China(No.61107064,No.61177071,No.600837004,No.60777010)+1 种基金Doctoral Fund of Ministry of Education,Open Fund of State Key Lab of ASIC&System(No.11MS009)Pujiang Fund and Shuguang fund
文摘In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.
基金Project supported by the National Nature Science Foundation of China (Grant No 60407001), National High Technology Developing Program of China (Grant No 2006AA03Z0414), the Science Fund for Distinguished YoungScholars of Hubei Province (Grant No 2006ABB017) and the Program for New Century Excellent Talents of Ministry of Education, China (Grant No NCET-04-0715).
文摘An analytic solution derived by multisection model to the small-signal frequency response (SSFR) of wavelength conversion based on cross-gain modulation (XGM) in semiconductor optical amplifiers (SOAs) is presented. The result contains details that can affect the characteristics of SSFR significantly more than previous ones.
文摘近年来,随着智能驾驶技术的不断发展,毫米波雷达作为汽车安全控制系统的核心组件受到了广泛关注。时分复用(TDM)多输入多输出(MIMO)调频连续波(FMCW)雷达因具有低硬件成本和高角度分辨率的优势而被广泛应用于汽车雷达,但TDMMIMO在实际应用中还存在对运动目标检测易出现速度模糊和角度模糊问题,导致检测误差变大,对于自动驾驶场景存在一定的安全隐患。为解决上述TDM MIMO FMCW雷达存在检测误差高的问题,提出了在多普勒模糊下的FMCW MIMO雷达目标参数估计方法,在不增加额外硬件开销的前提下,可确保算法在低复杂度下提升监测的时效性,解决了速度模糊和相位偏移问题;利用加Kaiser窗FFT波束形成方法对目标角度进行测量,从而得到更精准的目标信息。仿真和实验结果验证了所提方法的有效性。
文摘本文提出了一种双模式调制技术,以提高宽负载范围内降压型DC-DC转换器的转换效率。采用自适应导通时间电路(AOT)和斜坡信号VRAMP产生电路来维持转换器连续导通时间(CCM)工作模式下开关频率基本稳定;利用过零检测电路来检测电感电流,当电感电流过零时,能及时关断续流管,降低开关损耗,进一步提升轻载转换效率。该DC-DC基于SMIC 0.18 um BCD工艺进行电路仿真验证,该电路可在0~3A宽负载范围内正常工作,在输入电压3~5V范围内,PFM模式下输出电压纹波小于5.2mV,1m A负载下转换效率为87.37%。在PWM模式下输出电压纹波小于2.8mV,3A负载下最低转换效率为84.24%。峰值效率可达94.91%,全负载范围内转换效率大于84%。