Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S...Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.展开更多
Research on the propagation of elastic waves in piezoelectric nanostructures is very limited. The frequency dispersion of Love waves in layered piezoelectric nanostructures has not yet been reported when surface effec...Research on the propagation of elastic waves in piezoelectric nanostructures is very limited. The frequency dispersion of Love waves in layered piezoelectric nanostructures has not yet been reported when surface effects are taken into account. Based on the surface elasticity theory, the propagation of Love waves with surface effects in a structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated focusing on the frequency dispersion curves of different modes. The results show that under the electrically-open conditions, surface effects give rise to the dependence of Love wave dispersion on the film thickness when the thickness of the piezoelectric film reduces to nanometers. For a given wave frequency, phase velocity of Love waves in all dispersion modes exhibit obvious toward shift as the film thickness decreases or the surface parameters increase. Moreover, there may exist a cut-off frequency in the first mode dispersion below which Love waves will be evanescent in the structure due to surface effects. The cut-off frequency depends on the film thickness, the surface parameters and the bulk material properties.展开更多
Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection...Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.展开更多
We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedoma...We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.展开更多
In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary ...In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary wave (ISW) in the model is assumed to be weakly nonlinear and weakly dispersive, and the viscosity effects at all boundaries are ignored. The governing equations based on the Navier-Stokes and Euler equations are solved for internal solitary wave propagation over variable seabed topography. Theoretical formulations are established, from which analytical solutions are obtained, in addition to numerical results. Wave profiles from previous experimental studies are compared with the numerical results from the present analytical solutions. Numerical models developed on the basis of the present analytical solutions are better than those developed by Lynett and Liu (2002). The results of numerical modeling agree well with the experimental data.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
In order to investigate the correlation between a sound velocity and sediment bulk properties and explore the influence of frequency dependence of the sound velocity on the prediction of the sediment properties by the...In order to investigate the correlation between a sound velocity and sediment bulk properties and explore the influence of frequency dependence of the sound velocity on the prediction of the sediment properties by the sound velocity, a compressional wave velocity is measured at frequencies of 25-250 kHz on marine sediment samples collected from the Bohai Sea and the Yellow Sea in laboratory, together with the geotechnical parameters of sediments. The results indicate that the sound velocity ranges from 1.232 to 1.721 km/s for the collected sediment samples with a significant dispersion within the series measuring frequency. Poorly sorted sediments are highly dispersive nearly with a positive linear relationship. The porosity shows a better negative logarithmic correlation with the sound velocity compared with other geotechnical parameters. Generally, the sound velocity increases with the increasing of the average particle size, sand content, wet and dry bulk densities, and decreasing of the clay content, and water content. An important point should be demonstrated that the higher correlation can be obtained when the measuring frequency is low within the frequency ranges from 25 to 250 kHz since the inhomogeneity of sediment properties has a more remarkably influence on the laboratory sound velocity measurement at the high frequency.展开更多
The nonlinear waves of terahertz (THz) range are investigated in the paraelectric crystals SrTiO<sub>3</sub> at the temperatures ~77 K. The frequency dispersion is important there. In the absence of a bias...The nonlinear waves of terahertz (THz) range are investigated in the paraelectric crystals SrTiO<sub>3</sub> at the temperatures ~77 K. The frequency dispersion is important there. In the absence of a bias electric field the dominating nonlinearity is cubic. The frequency dispersion and nonlinearity correspond to existence of envelope solitons and the modulation instability (MI) of long input pulses, whereas in the transverse direction MI is absent. There exists a possibility to generate the regular sequences of short THz pulses due to MI in bounded SrTiO<sub>3</sub> crystals. The focusing of input long pulses reduces the threshold of MI, increases the output amplitudes of the short pulses, and provides more stable generation of the short pulses. It is investigated the frequency multiplication of THz electromagnetic radiation in bounded paraelectric SrTiO<sub>3</sub> when a bias electric field is applied. The dominating nonlinearity is quadratic there. The frequency dispersion and the transverse width of the input wave beams affect the generation of higher harmonics. It is possible to select the certain numbers of higher harmonics by means of the optimum length of the crystal, by the width of the beam of the input first harmonic, and by the focusing of the input first harmonic.展开更多
We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere...We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere, the radar cross section(RCS)of different metallic spheres is given at terahertz frequencies. The investigation of the RCS of polished metallic spheres shows the normalized RCS is always same to the metals’ normal incidence reflectivity when the sphere becomes electrically large. The metals which have high reflectivity(such as Al, Cu, Ag and Au) show that the corresponding RCS of the spheres is almost πa2 in terahertz band. The sphere’s RCS of the transition metal such as Fe begins to decrease obviously since the far infrared.展开更多
Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic me...Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic media with material tensors for electric and magnetic induction which only depend on the frequency. The general algebraic form of the polarization vectors for the electric field and their one-dimensional projection operators is discussed without the degenerate cases of optic axis for which they become two-dimensional projection operators. Group velocity and diffraction coefficients in an approximate equation for the slowly varying amplitudes of beam solutions are calculated. As special case a polariton permittivity for isotropic media with frequency dispersion but without losses is discussed for the usual passive case and for the active case (occupation inversion of two energy levels that goes in direction of laser theory) and the group velocity is calculated. For this active case, regions of frequency and wave vector with group velocities greater than that of light in vacuum were found. This is not fully understood and due to large diffraction is likely only to realize in guided resonator form. The notion of “negative refraction” is shortly discussed but we did not find agreement with its assessment in the original paper.展开更多
The plane-wave expansion(PWE) method is employed to calculate the photonic band structures of metal/dielectric(M/D) periodic systems. We consider a one-dimensional(1D) M/D superlattice with a metal layer characterized...The plane-wave expansion(PWE) method is employed to calculate the photonic band structures of metal/dielectric(M/D) periodic systems. We consider a one-dimensional(1D) M/D superlattice with a metal layer characterized by a frequency-dependent dielectric function. To calculate the photonic band of such a system, we propose a new method and thus avoid solving the nonlinear eigenvalue equations. We obtained the frequency dispersions and the energy distributions of eigen-modes of 1D superlattices. This general method is applicable to calculate the photonic band of a broad class of physical systems, e.g. 2D and 3D M/D photonic crystals. For comparison, we present a simple introduction of the finite-difference(FD) method to calculate the same system, and the agreement turns out to be good. But the FD method cannot be applied to the TM modes of the M/D superlattice.展开更多
The first hyperpolarizabilities of four squaric acid homologues: squaric acid, 1, 2-dithiosquaric acid, 1, 2-diselenosquaric acid and 1,2-ditellurosquaric acid have been calculated using ab initio and DFT methods. The...The first hyperpolarizabilities of four squaric acid homologues: squaric acid, 1, 2-dithiosquaric acid, 1, 2-diselenosquaric acid and 1,2-ditellurosquaric acid have been calculated using ab initio and DFT methods. The effects of equilibrium geometries. basis set and electron correlation on the first hyperpolarizabilities of these molecules were investigated. The frequency dispersion effect and solvent effect, which are essential to get reliable outputs in comparison to the experimental results, have also been explored. On the basis of these investigations, it is worthy to point out that the heavy atom effect takes effect for these squaric acid homologues.展开更多
The output of each individual channel in multi-carrier system can be processed to detect moving targets by the approach used in tradition narrowband pulse Doppler(PD) radar and then using non-coherent integration to...The output of each individual channel in multi-carrier system can be processed to detect moving targets by the approach used in tradition narrowband pulse Doppler(PD) radar and then using non-coherent integration to promote signal noise ratio(SNR). However, due to the difference of Doppler on sub-carriers, there occurs Doppler dispersion during non-coherent integration, which causes attenuation and extension on target's amplitude. Especially, it can deteriorate performance of target detection under wideband multicarrier system or fast-moving target scene. In this paper, a modified Fourier transform kernel is proposed to solve Doppler dispersion for multi-carrier chirp signal. It can achieve accumulation at the same frequency point for the target's Doppler of each subcarrier. The simulation results indicate that this method can effectively eliminate the integral loss caused by Doppler dispersion.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.20CX05005A)the Major Scientific and Technological Projects of CNPC(No.ZD2019-184-001)+2 种基金the PetroChina Innovation Foundation(No.2018D-5007-0214)the Shandong Provincial Natural Science Foundation(No.ZR2019MEE095)the National Natural Science Foundation of China(No.42174141).
文摘Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.
基金Supported by National Natural Science Foundation of China(Grant No.11372261)Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province,China(Grant No.2013JQ0030)+4 种基金Supporting Project of Department of Education of Sichuan Province,China(Grant No.2014zd3132)Opening Project of Key Laboratory of Testing Technology for Manufacturing ProcessSouthwest University of Science and Technology-Ministry of Education,China(Grant No.12zxzk02)Fund of Doctoral Research of Southwest University of Science and Technology,China(Grant No.12zx7106)Postgraduate Innovation Fund of Southwest University of Science and Technology,China(Grant No.15ycx128)
文摘Research on the propagation of elastic waves in piezoelectric nanostructures is very limited. The frequency dispersion of Love waves in layered piezoelectric nanostructures has not yet been reported when surface effects are taken into account. Based on the surface elasticity theory, the propagation of Love waves with surface effects in a structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated focusing on the frequency dispersion curves of different modes. The results show that under the electrically-open conditions, surface effects give rise to the dependence of Love wave dispersion on the film thickness when the thickness of the piezoelectric film reduces to nanometers. For a given wave frequency, phase velocity of Love waves in all dispersion modes exhibit obvious toward shift as the film thickness decreases or the surface parameters increase. Moreover, there may exist a cut-off frequency in the first mode dispersion below which Love waves will be evanescent in the structure due to surface effects. The cut-off frequency depends on the film thickness, the surface parameters and the bulk material properties.
基金The authors gratefully acknowledge the support of the National Nature Science Foundation of China(No.11774378)。
文摘Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.
基金the National Natural Science Foundation of China (60771017)the China Postdoctoral ScienceFoundation (20060390272)
文摘We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.
文摘In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary wave (ISW) in the model is assumed to be weakly nonlinear and weakly dispersive, and the viscosity effects at all boundaries are ignored. The governing equations based on the Navier-Stokes and Euler equations are solved for internal solitary wave propagation over variable seabed topography. Theoretical formulations are established, from which analytical solutions are obtained, in addition to numerical results. Wave profiles from previous experimental studies are compared with the numerical results from the present analytical solutions. Numerical models developed on the basis of the present analytical solutions are better than those developed by Lynett and Liu (2002). The results of numerical modeling agree well with the experimental data.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金The National Natural Science Foundation of China under contract Nos 41106061,41506077,41330965 and 41402253the Specialized Research Fund of First Insititute of Oceanography under contract No.GY0215G06the Public Science and Technology Research Funds Projects of Ocean of State Oceanic Administration under contract No.201405032
文摘In order to investigate the correlation between a sound velocity and sediment bulk properties and explore the influence of frequency dependence of the sound velocity on the prediction of the sediment properties by the sound velocity, a compressional wave velocity is measured at frequencies of 25-250 kHz on marine sediment samples collected from the Bohai Sea and the Yellow Sea in laboratory, together with the geotechnical parameters of sediments. The results indicate that the sound velocity ranges from 1.232 to 1.721 km/s for the collected sediment samples with a significant dispersion within the series measuring frequency. Poorly sorted sediments are highly dispersive nearly with a positive linear relationship. The porosity shows a better negative logarithmic correlation with the sound velocity compared with other geotechnical parameters. Generally, the sound velocity increases with the increasing of the average particle size, sand content, wet and dry bulk densities, and decreasing of the clay content, and water content. An important point should be demonstrated that the higher correlation can be obtained when the measuring frequency is low within the frequency ranges from 25 to 250 kHz since the inhomogeneity of sediment properties has a more remarkably influence on the laboratory sound velocity measurement at the high frequency.
文摘The nonlinear waves of terahertz (THz) range are investigated in the paraelectric crystals SrTiO<sub>3</sub> at the temperatures ~77 K. The frequency dispersion is important there. In the absence of a bias electric field the dominating nonlinearity is cubic. The frequency dispersion and nonlinearity correspond to existence of envelope solitons and the modulation instability (MI) of long input pulses, whereas in the transverse direction MI is absent. There exists a possibility to generate the regular sequences of short THz pulses due to MI in bounded SrTiO<sub>3</sub> crystals. The focusing of input long pulses reduces the threshold of MI, increases the output amplitudes of the short pulses, and provides more stable generation of the short pulses. It is investigated the frequency multiplication of THz electromagnetic radiation in bounded paraelectric SrTiO<sub>3</sub> when a bias electric field is applied. The dominating nonlinearity is quadratic there. The frequency dispersion and the transverse width of the input wave beams affect the generation of higher harmonics. It is possible to select the certain numbers of higher harmonics by means of the optimum length of the crystal, by the width of the beam of the input first harmonic, and by the focusing of the input first harmonic.
基金supported by the National Science Fund for Young Scientists of China(6130214861571011)
文摘We develop an efficient method for polished metallic sphere’s scattering prediction in terahertz band when its frequency dispersion property is considered. By deducing scattering solution of the lossy metallic sphere, the radar cross section(RCS)of different metallic spheres is given at terahertz frequencies. The investigation of the RCS of polished metallic spheres shows the normalized RCS is always same to the metals’ normal incidence reflectivity when the sphere becomes electrically large. The metals which have high reflectivity(such as Al, Cu, Ag and Au) show that the corresponding RCS of the spheres is almost πa2 in terahertz band. The sphere’s RCS of the transition metal such as Fe begins to decrease obviously since the far infrared.
文摘Two concepts of phenomenological optics of homogeneous, anisotropic and dispersive media are compared, the younger and more general concept of media with spatial dispersion and the older concept of (bi)-anisotropic media with material tensors for electric and magnetic induction which only depend on the frequency. The general algebraic form of the polarization vectors for the electric field and their one-dimensional projection operators is discussed without the degenerate cases of optic axis for which they become two-dimensional projection operators. Group velocity and diffraction coefficients in an approximate equation for the slowly varying amplitudes of beam solutions are calculated. As special case a polariton permittivity for isotropic media with frequency dispersion but without losses is discussed for the usual passive case and for the active case (occupation inversion of two energy levels that goes in direction of laser theory) and the group velocity is calculated. For this active case, regions of frequency and wave vector with group velocities greater than that of light in vacuum were found. This is not fully understood and due to large diffraction is likely only to realize in guided resonator form. The notion of “negative refraction” is shortly discussed but we did not find agreement with its assessment in the original paper.
基金supported by the special funds for the National Basic Research Program of China(Grant No.069c031001)the National Natural Science Foundation of China(Grant No.60521001).
文摘The plane-wave expansion(PWE) method is employed to calculate the photonic band structures of metal/dielectric(M/D) periodic systems. We consider a one-dimensional(1D) M/D superlattice with a metal layer characterized by a frequency-dependent dielectric function. To calculate the photonic band of such a system, we propose a new method and thus avoid solving the nonlinear eigenvalue equations. We obtained the frequency dispersions and the energy distributions of eigen-modes of 1D superlattices. This general method is applicable to calculate the photonic band of a broad class of physical systems, e.g. 2D and 3D M/D photonic crystals. For comparison, we present a simple introduction of the finite-difference(FD) method to calculate the same system, and the agreement turns out to be good. But the FD method cannot be applied to the TM modes of the M/D superlattice.
文摘The first hyperpolarizabilities of four squaric acid homologues: squaric acid, 1, 2-dithiosquaric acid, 1, 2-diselenosquaric acid and 1,2-ditellurosquaric acid have been calculated using ab initio and DFT methods. The effects of equilibrium geometries. basis set and electron correlation on the first hyperpolarizabilities of these molecules were investigated. The frequency dispersion effect and solvent effect, which are essential to get reliable outputs in comparison to the experimental results, have also been explored. On the basis of these investigations, it is worthy to point out that the heavy atom effect takes effect for these squaric acid homologues.
基金supported by the National Natural Science Foundation of China (61371107, 61362006)the Foundation of Key Lab. of Guangxi Broadband Wireless Communication & Signal Processing (GXKL061501)+1 种基金the Guangxi Natural Science Foundation (2014GXNSFBA118288)the Science and Technology on Information Transmission and Dissemination in Communication Networks Lab
文摘The output of each individual channel in multi-carrier system can be processed to detect moving targets by the approach used in tradition narrowband pulse Doppler(PD) radar and then using non-coherent integration to promote signal noise ratio(SNR). However, due to the difference of Doppler on sub-carriers, there occurs Doppler dispersion during non-coherent integration, which causes attenuation and extension on target's amplitude. Especially, it can deteriorate performance of target detection under wideband multicarrier system or fast-moving target scene. In this paper, a modified Fourier transform kernel is proposed to solve Doppler dispersion for multi-carrier chirp signal. It can achieve accumulation at the same frequency point for the target's Doppler of each subcarrier. The simulation results indicate that this method can effectively eliminate the integral loss caused by Doppler dispersion.