An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical c...An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.展开更多
基金supported by the World Class University Program funded by the Ministry of Education, Science, and Technology through the National Research Foundation of Korea (No. R31-10008)supported in part by NIH (No. BRP 1R01 EB 007969- 01)
文摘An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.