<div style="text-align:justify;"> Focusing of an area array camera is an important step in making a high precision imaging camera. Its testing method needs special study. In this paper, a method of cam...<div style="text-align:justify;"> Focusing of an area array camera is an important step in making a high precision imaging camera. Its testing method needs special study. In this paper, a method of camera focusing is introduced. The defocusing depth of camera is calculated by using the frequency spectrum of defocused image. This method is especially suitable for the focusing of the Planar Array Camera, and avoids the complicated work of adjusting the focus plane of the planar array camera in the focusing process. </div>展开更多
AIM: To study the relation between acoustic parameters and histological structure of biological tissue and to provide the basis for high-resolution image of biological tissues and quantitative ultrasonic diagnosis of...AIM: To study the relation between acoustic parameters and histological structure of biological tissue and to provide the basis for high-resolution image of biological tissues and quantitative ultrasonic diagnosis of liver disease. METHODS: Ultrasonic imaging and tissue characterization of four normal porcine liver and five cirrhotic liver tissue samples were performed using a high frequency imaging system. RESULTS: The acoustic parameters of cirrhotic liver tissue were larger than those of normal liver tissue. The sound velocity was 1577 m/s in normal liver tissue and 1631 m/s in cirrhotic liver tissue. At 35 MHz, the attenuation coefficient was 3.0 dB/mm in normal liver tissue and 4.1 dB/mm in cirrhotic liver tissue. The backscatter coefficient was 0.00431 dB/Srmm in cirrhotic liver tissue and 0.00303 dB/Srmm in normal liver tissue. The backscatter coefficient increased with the frequency. The high frequency images coincided with their histological features. CONCLUSION: The acoustic parameters, especially the sound backscatter coefficient, are sensitive to the changes of liver tissues and can be used to differentiate between the normal and pathological liver tissues. High frequency image system is a useful device for highresolution image and tissue characterization.展开更多
This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of trans...This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of transducer, the swing radius and sampling length etc. could be changed easily in compliance with the researcher's application based on this flexible digital scan converter. Linear interpolation is employed to achieve the coordinate transformations algorithm. Custom-built software is programmed to preliminarily handle the algorithm according to different ultrasound imaging applications. High performance FPGA will implement high speed interpolation calculation based on the preliminary data which are stored in the DDR2 SDRAM from the software. 64 bit 66 MHz PCI is employed to accomplish high speed data transmission. Experiment has shown that more than 500 frame rate could be achieved based on this high speed digital scan converter. The designed flexible and high speed digital scan converter could be used in current FPGA based high frequency ultrasound imaging system.展开更多
The Fuyang oil-layer in North Songliao Basin is characterized by thin interbedded sands and shales, strong lateral variation, strong reservoir heterogeniety, and so on. The thickness of individual sand layers is gener...The Fuyang oil-layer in North Songliao Basin is characterized by thin interbedded sands and shales, strong lateral variation, strong reservoir heterogeniety, and so on. The thickness of individual sand layers is generally 3 - 5 m. Identifying the channel sand-bodies of the Fuyang oil layer using seismic techniques is very difficult due to the low seismic resolution. Taking the GTZ area as an example, we discuss the genetic characteristics of the channel sand-bodies and point out the real difficulty in using seismic techniques to predict the channel sand-bodies. Two methods for the identification of channels are presented: frequency spectrum imaging and pre-stack azimuthal anisotropy. Identifying the channel sand-bodies in Fuyu oil-layer using the two seismic methods results in a success rate up to 80% compared with well data.展开更多
A novel broad tunable bandwidth and narrow instantaneous line-width linear swept laser source using combined tunable filters working at 1,300 nm center wavelength is proposed.The combined filters consist of a fiber Fa...A novel broad tunable bandwidth and narrow instantaneous line-width linear swept laser source using combined tunable filters working at 1,300 nm center wavelength is proposed.The combined filters consist of a fiber FabryPerot tunable filter and a tunable filter based on diffractive grating with scanning polygon mirror.In contrast to traditional method using single tunable filter,the trade-off between bandwidth and instantaneous line-width is alleviated.Parallel implementation of two semiconductor optical amplifiers with different wavelength range is adopted in the laser resonator for broadband light amplification.The Fourier domain mode locking swept laser source with combined tunable filters offers broadband tunable range with narrow instantaneous line-width,which is especially benefiting for high-quality optical frequency domain imaging.The proposed Fourier domain mode locking swept laser source provides a tuning range of 160 nm with instantaneous line-width of about 0.01nm at sweeping rate of 15 kHz,a finesse of 16,000 is thus achieved.展开更多
Photodynamic therapy(PDT)dosimetry,induding light dose,photosensitizer dose and tissue oxygen,has been a research focus in PDT.In this work,we present a three-dimensional(3D)quantification of protoporphyrin X(PpIX)usi...Photodynamic therapy(PDT)dosimetry,induding light dose,photosensitizer dose and tissue oxygen,has been a research focus in PDT.In this work,we present a three-dimensional(3D)quantification of protoporphyrin X(PpIX)using combined spatial frequency domain imaging(SFDI)and diffuse fuorescence tomography(DFT).The SFDI maps both the distributions of tissue absorption and scattering properties at three wavelengths and accordingly provides the optical background for DFT and extracts the tissue oxygenation for assessing the therapeutic outcomes,while DFT dynamically monitors the 3D distribution of PpEX dose from measured fluorescence signals for the procedure optimization.A pilot in vrivo application in tumor nude models showed that the proposed SFDI/DFT is able to dynamically trace changes in the PpX concentration and tissue oaxygen during the treatment,rendering it a potentially powerful tool for PDT to improve clinical eficacy.展开更多
Direct quadrature modulation technology is suitable for wide-band radar signal generation. However, this method has rigorous requirements on amplitude and phase balance of the orthogonal input signals. If the requirem...Direct quadrature modulation technology is suitable for wide-band radar signal generation. However, this method has rigorous requirements on amplitude and phase balance of the orthogonal input signals. If the requirements are not satisfied, there would be modulation errors such as image frequency and oscillator leakage that cannot be filtered. The modulation errors will therefore raise the noise floor of the range profile and reduce the dynamic range of the Synthetic Aperture Radar (SAR) image as a whole. In this paper, the wide-band In-phase/Quadrature-phase (I/Q) modulation errors are modeling analyzed, and the influence of wide-band I/Q modulation errors on SAR imaging is discussed. Furthermore, a compensation method of modulation errors is proposed, and the circuit implementation of the radar signal generation and pre-distortion is presented. The experimental results illustrate that the curves of the I/Q amplitude and phase imbalance errors are successfully extracted and the rejection of image frequency improved significantly, thus meets the requirements of the SAR imaging.展开更多
An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical c...An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.展开更多
Rutile TiO2 (001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantileve...Rutile TiO2 (001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V.展开更多
A weak infrared (IR) image amplifier with more than 60-dB optical gain and is developed from a picosecond (PS) 355-nm pumped gated optical parametric frequency up-conversion amplifier (OPA) in a/% BaB204 (BBO)...A weak infrared (IR) image amplifier with more than 60-dB optical gain and is developed from a picosecond (PS) 355-nm pumped gated optical parametric frequency up-conversion amplifier (OPA) in a/% BaB204 (BBO) crystal. The IR image at 1064 nm is amplified and up-converted into the visible region at 532 nm by parametric amplification and up-conversion. With the optimized optical gain, the lowest detectable energy of the image can be as low as 1.8 femto-Joule per pulse, which is three orders of magnitude lower than the detection limit of a charge-coupled device (CCD) camera. The transversal resolution of the OPA imaging is investigated, and the approaches for higher detection sensitivity and higher transversal resolution are proposed.展开更多
文摘<div style="text-align:justify;"> Focusing of an area array camera is an important step in making a high precision imaging camera. Its testing method needs special study. In this paper, a method of camera focusing is introduced. The defocusing depth of camera is calculated by using the frequency spectrum of defocused image. This method is especially suitable for the focusing of the Planar Array Camera, and avoids the complicated work of adjusting the focus plane of the planar array camera in the focusing process. </div>
基金Supported by the National Natural Science Foundation of China, No. 10204014
文摘AIM: To study the relation between acoustic parameters and histological structure of biological tissue and to provide the basis for high-resolution image of biological tissues and quantitative ultrasonic diagnosis of liver disease. METHODS: Ultrasonic imaging and tissue characterization of four normal porcine liver and five cirrhotic liver tissue samples were performed using a high frequency imaging system. RESULTS: The acoustic parameters of cirrhotic liver tissue were larger than those of normal liver tissue. The sound velocity was 1577 m/s in normal liver tissue and 1631 m/s in cirrhotic liver tissue. At 35 MHz, the attenuation coefficient was 3.0 dB/mm in normal liver tissue and 4.1 dB/mm in cirrhotic liver tissue. The backscatter coefficient was 0.00431 dB/Srmm in cirrhotic liver tissue and 0.00303 dB/Srmm in normal liver tissue. The backscatter coefficient increased with the frequency. The high frequency images coincided with their histological features. CONCLUSION: The acoustic parameters, especially the sound backscatter coefficient, are sensitive to the changes of liver tissues and can be used to differentiate between the normal and pathological liver tissues. High frequency image system is a useful device for highresolution image and tissue characterization.
文摘This paper presents a flexible and high speed digital scan converter (DSC) with the ability to handle high frequency ultrasound imaging in real-time. The characteristics in imaging system such as focus length of transducer, the swing radius and sampling length etc. could be changed easily in compliance with the researcher's application based on this flexible digital scan converter. Linear interpolation is employed to achieve the coordinate transformations algorithm. Custom-built software is programmed to preliminarily handle the algorithm according to different ultrasound imaging applications. High performance FPGA will implement high speed interpolation calculation based on the preliminary data which are stored in the DDR2 SDRAM from the software. 64 bit 66 MHz PCI is employed to accomplish high speed data transmission. Experiment has shown that more than 500 frame rate could be achieved based on this high speed digital scan converter. The designed flexible and high speed digital scan converter could be used in current FPGA based high frequency ultrasound imaging system.
文摘The Fuyang oil-layer in North Songliao Basin is characterized by thin interbedded sands and shales, strong lateral variation, strong reservoir heterogeniety, and so on. The thickness of individual sand layers is generally 3 - 5 m. Identifying the channel sand-bodies of the Fuyang oil layer using seismic techniques is very difficult due to the low seismic resolution. Taking the GTZ area as an example, we discuss the genetic characteristics of the channel sand-bodies and point out the real difficulty in using seismic techniques to predict the channel sand-bodies. Two methods for the identification of channels are presented: frequency spectrum imaging and pre-stack azimuthal anisotropy. Identifying the channel sand-bodies in Fuyu oil-layer using the two seismic methods results in a success rate up to 80% compared with well data.
基金supported by Natural Science Foundation of China(60978037,60878057).
文摘A novel broad tunable bandwidth and narrow instantaneous line-width linear swept laser source using combined tunable filters working at 1,300 nm center wavelength is proposed.The combined filters consist of a fiber FabryPerot tunable filter and a tunable filter based on diffractive grating with scanning polygon mirror.In contrast to traditional method using single tunable filter,the trade-off between bandwidth and instantaneous line-width is alleviated.Parallel implementation of two semiconductor optical amplifiers with different wavelength range is adopted in the laser resonator for broadband light amplification.The Fourier domain mode locking swept laser source with combined tunable filters offers broadband tunable range with narrow instantaneous line-width,which is especially benefiting for high-quality optical frequency domain imaging.The proposed Fourier domain mode locking swept laser source provides a tuning range of 160 nm with instantaneous line-width of about 0.01nm at sweeping rate of 15 kHz,a finesse of 16,000 is thus achieved.
基金supported by the National Natural Science Foundation of China under Grant Nos.(81871393 and 62075156).
文摘Photodynamic therapy(PDT)dosimetry,induding light dose,photosensitizer dose and tissue oxygen,has been a research focus in PDT.In this work,we present a three-dimensional(3D)quantification of protoporphyrin X(PpIX)using combined spatial frequency domain imaging(SFDI)and diffuse fuorescence tomography(DFT).The SFDI maps both the distributions of tissue absorption and scattering properties at three wavelengths and accordingly provides the optical background for DFT and extracts the tissue oxygenation for assessing the therapeutic outcomes,while DFT dynamically monitors the 3D distribution of PpEX dose from measured fluorescence signals for the procedure optimization.A pilot in vrivo application in tumor nude models showed that the proposed SFDI/DFT is able to dynamically trace changes in the PpX concentration and tissue oaxygen during the treatment,rendering it a potentially powerful tool for PDT to improve clinical eficacy.
基金Supported by 863 Program (2009AA12Z103)973 Program (2009CB72400)
文摘Direct quadrature modulation technology is suitable for wide-band radar signal generation. However, this method has rigorous requirements on amplitude and phase balance of the orthogonal input signals. If the requirements are not satisfied, there would be modulation errors such as image frequency and oscillator leakage that cannot be filtered. The modulation errors will therefore raise the noise floor of the range profile and reduce the dynamic range of the Synthetic Aperture Radar (SAR) image as a whole. In this paper, the wide-band In-phase/Quadrature-phase (I/Q) modulation errors are modeling analyzed, and the influence of wide-band I/Q modulation errors on SAR imaging is discussed. Furthermore, a compensation method of modulation errors is proposed, and the circuit implementation of the radar signal generation and pre-distortion is presented. The experimental results illustrate that the curves of the I/Q amplitude and phase imbalance errors are successfully extracted and the rejection of image frequency improved significantly, thus meets the requirements of the SAR imaging.
基金supported by the World Class University Program funded by the Ministry of Education, Science, and Technology through the National Research Foundation of Korea (No. R31-10008)supported in part by NIH (No. BRP 1R01 EB 007969- 01)
文摘An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.
文摘Rutile TiO2 (001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V.
基金supported by the State Key Program for Basic Research of China(No.2010CB630706)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘A weak infrared (IR) image amplifier with more than 60-dB optical gain and is developed from a picosecond (PS) 355-nm pumped gated optical parametric frequency up-conversion amplifier (OPA) in a/% BaB204 (BBO) crystal. The IR image at 1064 nm is amplified and up-converted into the visible region at 532 nm by parametric amplification and up-conversion. With the optimized optical gain, the lowest detectable energy of the image can be as low as 1.8 femto-Joule per pulse, which is three orders of magnitude lower than the detection limit of a charge-coupled device (CCD) camera. The transversal resolution of the OPA imaging is investigated, and the approaches for higher detection sensitivity and higher transversal resolution are proposed.