In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
Global positioning system (GPS) for vehicle applications in the urban area is challenged by low signal intensity. The carrier loop based on fast Fourier transform (FFT) can obtain a high signal to noise ratio (SNR) ga...Global positioning system (GPS) for vehicle applications in the urban area is challenged by low signal intensity. The carrier loop based on fast Fourier transform (FFT) can obtain a high signal to noise ratio (SNR) gain by increasing the observation time. However, this leads to a major problem that the acceleration cannot be ignored. The performance of the FFT-based loop will decline with the acceleration increasing. This paper discusses the effect of the dynamic on FFT first. Then a high performance carrier tracking loop for weak GPS L5 signals is proposed. It combines discrete chirp-Fourier transform (DCFT) and the phase fitting method to estimate Doppler frequency and Doppler rate simultaneously. First, a sequence of integration results is used to perform DCFT to estimate coarse Doppler frequency and Doppler rate. Second, the phase of the sequence is calculated and used to perform linear fitting. By the phase fitting method, the fine Doppler frequency and Doppler rate can be estimated. The computation cost is small because the integration results are used and the phase fitting method needs only coarse estimates of Doppler frequency and Doppler rate. Compared with FFT and DCFT, the precision of the phase fitting method is not limited by the resolution. Thus the proposed loop can get high precision and low carrier to noise ratio (C/N-0) tracking threshold. Simulation results show this loop has a great improvement than conventional loops for urban weak-signal applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
基金supported by the National Natural Science Foundation of China(6140134061573059)the Areo Space T.T.&.C.Innovation Program(201515A)
文摘Global positioning system (GPS) for vehicle applications in the urban area is challenged by low signal intensity. The carrier loop based on fast Fourier transform (FFT) can obtain a high signal to noise ratio (SNR) gain by increasing the observation time. However, this leads to a major problem that the acceleration cannot be ignored. The performance of the FFT-based loop will decline with the acceleration increasing. This paper discusses the effect of the dynamic on FFT first. Then a high performance carrier tracking loop for weak GPS L5 signals is proposed. It combines discrete chirp-Fourier transform (DCFT) and the phase fitting method to estimate Doppler frequency and Doppler rate simultaneously. First, a sequence of integration results is used to perform DCFT to estimate coarse Doppler frequency and Doppler rate. Second, the phase of the sequence is calculated and used to perform linear fitting. By the phase fitting method, the fine Doppler frequency and Doppler rate can be estimated. The computation cost is small because the integration results are used and the phase fitting method needs only coarse estimates of Doppler frequency and Doppler rate. Compared with FFT and DCFT, the precision of the phase fitting method is not limited by the resolution. Thus the proposed loop can get high precision and low carrier to noise ratio (C/N-0) tracking threshold. Simulation results show this loop has a great improvement than conventional loops for urban weak-signal applications.