High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case...High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.展开更多
基金the Austrian Academy of Sciences(OeAW)for funding the landslide monitoring project for several yearsthe Austrian Federal Railways(OBB)for the funding of the geogrid monitoring project,especially the participating departments of OBB-Infrastruktur AG:Tunneling,Surveying and Data Management,Research and Development
文摘High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.