The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based r...The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based resources is an important mitigation option for maintaining grid security under the conditions of low inertia and insufficient primary frequency response capability. However, the understanding and technical characteristics of the FFR of inverter-based resources are still unclear. Aiming at solving the aforementioned problems, this paper proposes a definition for FFR based on the impact mechanism of FFR on system frequency. The performance requirements of FFR are clarified. Then, the effects of FFR on system frequency characteristics are further analyzed based on steady-state frequency deviation, the initial rate of change of frequency, and the maximum transient frequency deviation. Finally, the system requirements for FFR and its application effects are verified by simulating an actual bulk power grid, providing technical support for subsequent engineering application.展开更多
Energy access,climate change and public health issues are some major drivers for the need for renewable sources.However,most renewable sources,excluding large hydro,have zero or negligible rotational inertia,which is ...Energy access,climate change and public health issues are some major drivers for the need for renewable sources.However,most renewable sources,excluding large hydro,have zero or negligible rotational inertia,which is critical to stabilizing the power system after contingency.Therefore,this paper proposes a droop-based inertia emulator to reduce the rate of change of frequency and frequency deviations.The robustness of the controller is analysed by applying various uncertainties and disturbances of power system components that were carried out using DIgSILENT PowerFactory simulations.The obtained results are compared with existing literature and the desired performance shows an improvement in the rate of change of frequency of 34.78%for an IEEE 6-bus system,24.32%for a 12-bus system and 18%for a 39-bus system.展开更多
This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency sh...This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency shift and path difference,the virtual path difference is calculated from the measured value of Doppler frequency shift by means of mean value correction.Then,under the assumption that the target is moving at a constant speed along a straight line,two coaxial virtual double base arrays are constructed by using the moving track of the moving target based on the method of fixed period time difference.On this basis,the moving distance of the moving target can be calculated by using the ratio relationship between the frequency difference and the radial distance between the two adjacent detection points in the middle of the array,and the linear solution of the two double base path difference positioning equations.At this point,the relative coordinate position of the moving target can be obtained by directly using the linear solution of the double base path difference positioning equation again.展开更多
Hybrid multi-terminal direct current(MTDC)transmission technology has been a research focus,and primary frequency regulation(FR)improvement in the receiving-end system is one of the problems to be solved.This paper pr...Hybrid multi-terminal direct current(MTDC)transmission technology has been a research focus,and primary frequency regulation(FR)improvement in the receiving-end system is one of the problems to be solved.This paper presents a decentralized primary FR scheme for hybrid MTDC power systems considering multi-source enhancement to help suppress frequency disturbance in the receiving-end systems.All the converters only need local frequency or DC voltage signal input to respond to system disturbance without communication or a control center,i.e.,a decentralized control scheme.The proposed scheme can activate appropriate power sources to assist in FR in various system disturbance severities with fine-designed thresholds,ensuring sufficient utilization of each power source.To better balance FR performance and FR resource participation,an evaluation index is proposed and the parameter optimization problem is further conducted.Finally,the validity of the proposed scheme is verified by simulations in MATLAB/Simulink.展开更多
We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161...We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.展开更多
By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of ou...By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.展开更多
Human Consciousness is one of most elusive issues in the scientific history. Its nature created major historical debate started thousands of years ago and still ongoing. Despite the explosive developments in the last ...Human Consciousness is one of most elusive issues in the scientific history. Its nature created major historical debate started thousands of years ago and still ongoing. Despite the explosive developments in the last century to explore its nature, the knowledge about it is still deficient. The important advances in the twentieth and 21st centuries in understanding cerebral cortex dynamics fortified by the dominant materialistic approach of the era dictated its impact on consciousness science, which is perceived as sole human brain function. This original review is a call for holistic perception of human consciousness incorporating the ancient wisdom of the human civilizations with the massive current era advances in different disciplines of applied sciences. The description of René Descartes in the 17th century of the Cartesian dualism is timely to revisit with new holistic perspective, in view of the major advances of our understanding of heart brain communications, astrophysical resonances with human heart ascending afferents to central nervous system, and signaling between humans and the space. Universal vibrations, frequencies and resonances as perceived by Nikola Tesla constitute the core of our new conceptual and experimental perspective on human consciousness. Neural and psychological correlates of human consciousness which dominate the consciousness research nowadays should undergo revolutionary conceptual understanding to perceive consciousness as a massive universal event expanding from human genes to galaxies. In the next discussion, we are going to navigate in the nature and fate of human consciousness with new innovative universal perspective based on heart rate variability of human heart and its cosmic resonances as represented by Schumann Resonances, Solar Wind Indices and Galactic Cosmic Rays. The interpretation of our existential secrets and biology without the space around us is a major gap in our scientific perception of life. The delicate orchestration between human heart and the space frequencies create the great whisper which in our perspective, encodes the secrets of human consciousness.展开更多
This study investigated the effects of the frequency at which English as a foreign language (EFL) students were exposed to words from the input modes of reading and listening. Accordingly, 15 words of three frequenc...This study investigated the effects of the frequency at which English as a foreign language (EFL) students were exposed to words from the input modes of reading and listening. Accordingly, 15 words of three frequency groups were selected. A total of 60 Chinese EFL students were recruited. The four test types of recall of form, recognition of form, recall of meaning, and recognition of meaning were administered to measure participants' ability in building a form-meaning link. Immediate posttests were administered for assessing vocabulary development, and delayed posttests were administered two weeks later for assessing retention. The results revealed that new words could be learned incidentally in both modes, but more word knowledge was gained in reading. The effect of word exposure frequency on incidental vocabulary gains was significant for the four test types in both of the two modes. Since only partial word knowledge was acquired by both modes, it appeared that for the two modes to be a valuable source for incidental vocabulary learning, not only word exposure frequency, but also elaborate woM processing is needed. Relevant implications for teaching and learning vocabulary are discussed.展开更多
Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of con...Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.展开更多
Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simp...Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.展开更多
One of the important features of low-carbon electric power system is the massive deployment of renewable energy resources in the advent of a new carbon-strained economy.Wind generation is a major technology of generat...One of the important features of low-carbon electric power system is the massive deployment of renewable energy resources in the advent of a new carbon-strained economy.Wind generation is a major technology of generating electric power with zero carbon dioxide emission.In a power system with the high penetration of wind generation,the displacement of conventional synchronous generators with variable speed wind turbines reduces system inertia.This leads to larger system frequency deviation following a loss of large generation.In this paper,the impact of the reduction of system inertia on system frequency is analyzed as the result of the integration of a significant amount of wind generation into power systems.Furthermore,we present a preliminary study of the impact of the distribution of the inertia contributions from those online conventional synchronous generators on the rate of change of frequency(ROCOF)based on the total energy injected into the system due to the fault.The total fault energy is represented using Hamiltonian formulism.With the IEEE 39-bus system,it is shown that for a fault with the given injected total energy,clearing time,and location,the distribution of inertia contributions can significantly affect the magnitude of ROCOF.Moreover,for such a fault with different locations,the average of the magnitudes of ROCOF caused by the fault at different locations is larger when the distribution of the inertia contributions is more dispersed.展开更多
This paper describes a 12-bit 125-MS/spipelinedanalog-to-digitalconverter(ADC)thatisimplemented in a 0.18 #m CMOS process. A gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enha...This paper describes a 12-bit 125-MS/spipelinedanalog-to-digitalconverter(ADC)thatisimplemented in a 0.18 #m CMOS process. A gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.79 least significant bit (LSB) and 0.86 LSB, respectively, at the full sampling rate. The ADC exhibits an effective number of bits (ENOB) of more than 11.05 bits at the input frequency of 10.5 MHz. The ADC also achieves a 10.5 bits ENOB with the Nyquist input frequency at the full sample rate. In addition, the ADC consumes 62 mW from a 1.9 V power supply and occupies 1.17 mm2, which includes an on-chip reference buffer. The figure-of-merit of this ADC is 0.23 p J/step.展开更多
The frequency of based on the load pattern the power system varies of the consumers. With continuous increase in the load, the frequency of the system keeps decreasing and may reach its minimum allowable limits. Furth...The frequency of based on the load pattern the power system varies of the consumers. With continuous increase in the load, the frequency of the system keeps decreasing and may reach its minimum allowable limits. Further increase in the load will result in more frequency drop leading to the need of load shedding, if excess generation is not available to cater the need. This paper proposed a methodology in a hybrid thermal-hydro system for finding the required amount of load to be shed for setting the frequency of the system within its minimum allowable limits. The load shedding steps were obtained based on the rate of change of frequency with the increase in the load in both areas. The impact of superconducting magnetic energy storage (SMES) was obtained on load shedding scheme. The comparison of the results was presented on the two-area system.展开更多
The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the syst...The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.展开更多
基金supported by National Science Foundation of China(51477091)。
文摘The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based resources is an important mitigation option for maintaining grid security under the conditions of low inertia and insufficient primary frequency response capability. However, the understanding and technical characteristics of the FFR of inverter-based resources are still unclear. Aiming at solving the aforementioned problems, this paper proposes a definition for FFR based on the impact mechanism of FFR on system frequency. The performance requirements of FFR are clarified. Then, the effects of FFR on system frequency characteristics are further analyzed based on steady-state frequency deviation, the initial rate of change of frequency, and the maximum transient frequency deviation. Finally, the system requirements for FFR and its application effects are verified by simulating an actual bulk power grid, providing technical support for subsequent engineering application.
文摘Energy access,climate change and public health issues are some major drivers for the need for renewable sources.However,most renewable sources,excluding large hydro,have zero or negligible rotational inertia,which is critical to stabilizing the power system after contingency.Therefore,this paper proposes a droop-based inertia emulator to reduce the rate of change of frequency and frequency deviations.The robustness of the controller is analysed by applying various uncertainties and disturbances of power system components that were carried out using DIgSILENT PowerFactory simulations.The obtained results are compared with existing literature and the desired performance shows an improvement in the rate of change of frequency of 34.78%for an IEEE 6-bus system,24.32%for a 12-bus system and 18%for a 39-bus system.
文摘This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency shift and path difference,the virtual path difference is calculated from the measured value of Doppler frequency shift by means of mean value correction.Then,under the assumption that the target is moving at a constant speed along a straight line,two coaxial virtual double base arrays are constructed by using the moving track of the moving target based on the method of fixed period time difference.On this basis,the moving distance of the moving target can be calculated by using the ratio relationship between the frequency difference and the radial distance between the two adjacent detection points in the middle of the array,and the linear solution of the two double base path difference positioning equations.At this point,the relative coordinate position of the moving target can be obtained by directly using the linear solution of the double base path difference positioning equation again.
基金supported by the National Natural Science Foundation of China(No.52077196)the Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.(No.5211JY21N001)。
文摘Hybrid multi-terminal direct current(MTDC)transmission technology has been a research focus,and primary frequency regulation(FR)improvement in the receiving-end system is one of the problems to be solved.This paper presents a decentralized primary FR scheme for hybrid MTDC power systems considering multi-source enhancement to help suppress frequency disturbance in the receiving-end systems.All the converters only need local frequency or DC voltage signal input to respond to system disturbance without communication or a control center,i.e.,a decentralized control scheme.The proposed scheme can activate appropriate power sources to assist in FR in various system disturbance severities with fine-designed thresholds,ensuring sufficient utilization of each power source.To better balance FR performance and FR resource participation,an evaluation index is proposed and the parameter optimization problem is further conducted.Finally,the validity of the proposed scheme is verified by simulations in MATLAB/Simulink.
基金Japan Science and Technology Agency(JST)Japan Agency for Medical Research and Development(AMED)
文摘We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.
基金National Key R&D Program of China(2017YFA0303703,2016YFA0302500)National Natural Science Foundation of China(NSFC)(61435007,11574144,61475099)+1 种基金Natural Science Foundation of Jiangsu Province,China(BK20150015)Fundamental Research Funds for the Central Universities(021314380086)
文摘By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.
文摘Human Consciousness is one of most elusive issues in the scientific history. Its nature created major historical debate started thousands of years ago and still ongoing. Despite the explosive developments in the last century to explore its nature, the knowledge about it is still deficient. The important advances in the twentieth and 21st centuries in understanding cerebral cortex dynamics fortified by the dominant materialistic approach of the era dictated its impact on consciousness science, which is perceived as sole human brain function. This original review is a call for holistic perception of human consciousness incorporating the ancient wisdom of the human civilizations with the massive current era advances in different disciplines of applied sciences. The description of René Descartes in the 17th century of the Cartesian dualism is timely to revisit with new holistic perspective, in view of the major advances of our understanding of heart brain communications, astrophysical resonances with human heart ascending afferents to central nervous system, and signaling between humans and the space. Universal vibrations, frequencies and resonances as perceived by Nikola Tesla constitute the core of our new conceptual and experimental perspective on human consciousness. Neural and psychological correlates of human consciousness which dominate the consciousness research nowadays should undergo revolutionary conceptual understanding to perceive consciousness as a massive universal event expanding from human genes to galaxies. In the next discussion, we are going to navigate in the nature and fate of human consciousness with new innovative universal perspective based on heart rate variability of human heart and its cosmic resonances as represented by Schumann Resonances, Solar Wind Indices and Galactic Cosmic Rays. The interpretation of our existential secrets and biology without the space around us is a major gap in our scientific perception of life. The delicate orchestration between human heart and the space frequencies create the great whisper which in our perspective, encodes the secrets of human consciousness.
基金supported by the Fund Program of Education Sciences Planning in Hainan Province[Grant number:QJY13516003]
文摘This study investigated the effects of the frequency at which English as a foreign language (EFL) students were exposed to words from the input modes of reading and listening. Accordingly, 15 words of three frequency groups were selected. A total of 60 Chinese EFL students were recruited. The four test types of recall of form, recognition of form, recall of meaning, and recognition of meaning were administered to measure participants' ability in building a form-meaning link. Immediate posttests were administered for assessing vocabulary development, and delayed posttests were administered two weeks later for assessing retention. The results revealed that new words could be learned incidentally in both modes, but more word knowledge was gained in reading. The effect of word exposure frequency on incidental vocabulary gains was significant for the four test types in both of the two modes. Since only partial word knowledge was acquired by both modes, it appeared that for the two modes to be a valuable source for incidental vocabulary learning, not only word exposure frequency, but also elaborate woM processing is needed. Relevant implications for teaching and learning vocabulary are discussed.
基金the National Natural Science Foundation of China(51922061)the Science and Technology Project of State Grid Corporation of China(SGZJ0000KXJS1900418).
文摘Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.
基金Supports from the Iran National Science Foundation(INSF) in lran(No.91001766)
文摘Pressure fluctuations signals of a lab-scale fiuidized bed (15 cm inner diameter and 2 m height) at different superficial gas velocities were measured. Recurrence plot (RP) and recurrence rate (RR), and the simplest variable of recurrence quantification analysis (RQA) were used to analyze the pressure signals. Different patterns observed in RP reflect different dynamic behavior of the system under study. It was also found that the variance of RR (a2R) Could reveal the peak dominant frequencies (PDF) of different dynamic systems: completely periodic, completely stochastic, Lorenz system, and fluidized bed. The results were compared with power spectral density. Additionally, the diagram of σ^2RR provides a new technique for prediction of transition velocity from bubbling to turbulent fluidization regime.
文摘One of the important features of low-carbon electric power system is the massive deployment of renewable energy resources in the advent of a new carbon-strained economy.Wind generation is a major technology of generating electric power with zero carbon dioxide emission.In a power system with the high penetration of wind generation,the displacement of conventional synchronous generators with variable speed wind turbines reduces system inertia.This leads to larger system frequency deviation following a loss of large generation.In this paper,the impact of the reduction of system inertia on system frequency is analyzed as the result of the integration of a significant amount of wind generation into power systems.Furthermore,we present a preliminary study of the impact of the distribution of the inertia contributions from those online conventional synchronous generators on the rate of change of frequency(ROCOF)based on the total energy injected into the system due to the fault.The total fault energy is represented using Hamiltonian formulism.With the IEEE 39-bus system,it is shown that for a fault with the given injected total energy,clearing time,and location,the distribution of inertia contributions can significantly affect the magnitude of ROCOF.Moreover,for such a fault with different locations,the average of the magnitudes of ROCOF caused by the fault at different locations is larger when the distribution of the inertia contributions is more dispersed.
基金Project supported by the Foundation of Shanghai Municipal Commission of Economy and Informatization(No.130311)
文摘This paper describes a 12-bit 125-MS/spipelinedanalog-to-digitalconverter(ADC)thatisimplemented in a 0.18 #m CMOS process. A gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.79 least significant bit (LSB) and 0.86 LSB, respectively, at the full sampling rate. The ADC exhibits an effective number of bits (ENOB) of more than 11.05 bits at the input frequency of 10.5 MHz. The ADC also achieves a 10.5 bits ENOB with the Nyquist input frequency at the full sample rate. In addition, the ADC consumes 62 mW from a 1.9 V power supply and occupies 1.17 mm2, which includes an on-chip reference buffer. The figure-of-merit of this ADC is 0.23 p J/step.
文摘The frequency of based on the load pattern the power system varies of the consumers. With continuous increase in the load, the frequency of the system keeps decreasing and may reach its minimum allowable limits. Further increase in the load will result in more frequency drop leading to the need of load shedding, if excess generation is not available to cater the need. This paper proposed a methodology in a hybrid thermal-hydro system for finding the required amount of load to be shed for setting the frequency of the system within its minimum allowable limits. The load shedding steps were obtained based on the rate of change of frequency with the increase in the load in both areas. The impact of superconducting magnetic energy storage (SMES) was obtained on load shedding scheme. The comparison of the results was presented on the two-area system.
文摘The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.