Two-dimensional van der Waals(2D vdW)material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties.In this study,we demonstrate graphene(...Two-dimensional van der Waals(2D vdW)material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties.In this study,we demonstrate graphene(Gr)-bridge heterostructure devices consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/n-type molybdenum disulfide as a channel material for field-effect transistors(FET).Unlike conventional FET operation,our Gr-bridge devices exhibit nonclassical transfer characteristics(humped transfer curve),thus possessing a negative differential transconductance.These phenomena are interpreted as the operating behavior in two series-connected FETs,and they result from the gate-tunable contact capacity of the Gr-bridge layer.Multi-value logic inverters and frequency tripler circuits are successfully demonstrated using ambipolar semiconductors with narrow-and wide-bandgap materials as more advanced circuit applications based on non-classical transfer characteristics.Thus,we believe that our innovative and straightforward device structure engineering will be a promising technique for future multi-functional circuit applications of 2D nanoelectronics.展开更多
基金Y.T.L.acknowledges the financial support from the National Research Foundation of Korea(NRF)(No.NRF-2021R1C1C1005235)D.K.H.acknowledges the financial support from the Korea Institute of Science and Technology(KIST)Institution Program(No.2E31532).
文摘Two-dimensional van der Waals(2D vdW)material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties.In this study,we demonstrate graphene(Gr)-bridge heterostructure devices consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/n-type molybdenum disulfide as a channel material for field-effect transistors(FET).Unlike conventional FET operation,our Gr-bridge devices exhibit nonclassical transfer characteristics(humped transfer curve),thus possessing a negative differential transconductance.These phenomena are interpreted as the operating behavior in two series-connected FETs,and they result from the gate-tunable contact capacity of the Gr-bridge layer.Multi-value logic inverters and frequency tripler circuits are successfully demonstrated using ambipolar semiconductors with narrow-and wide-bandgap materials as more advanced circuit applications based on non-classical transfer characteristics.Thus,we believe that our innovative and straightforward device structure engineering will be a promising technique for future multi-functional circuit applications of 2D nanoelectronics.