期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Asymmetric Three-Phase Cascading Trinary-DC Source Multilevel Inverter Topologies for Variable Frequency PWM
1
作者 G. Irusapparajan D. Periyaazhagar 《Circuits and Systems》 2016年第4期506-519,共14页
Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascad... Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascaded full bridge inverter operation with dissimilar (unequal) DC Source and it is fired by using variable frequency pulse with modulation technique as a switching strategy. This pulse width modulation switching strategy has a newly adopted multicarrier single reference technique. The performance parameter factors like Form Factor (FF), Crest Factor (CF), Total Harmonic Distortion (THD) and fundamental RMS output voltage (V<sub>RMS</sub>) are estimated by using proposed asymmetrical three-phase cascading multilevel inverter for several modulation indices (0.8 - 1). The research study carries with MATLAB/SIMULINK based simulation and experimental results obtained using appropriate prototype (test board) to prove the viability of the proposed concept. 展开更多
关键词 Trinary Multilevel Inverter Variable frequency Pulse width Modulation Total Harmonic Distortions Trinary-DC Source Distortion Factor
下载PDF
Active disturbance rejected predictive functional control for space vehicles with RCS 被引量:2
2
作者 TIAN Jiayi ZHANG Shifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期1022-1035,共14页
Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitab... Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitable internal uncertainties and external disturbances in practice, this inherent nonlinear character always hinders space vehicles autopilot from pursuing precise tracking performance. Compared to most of pre-existing methodologies that passively suppress the uncertainties and disturbances, a design based on predictive functional control(PFC) and generalized extended state observer(GESO) is firstly proposed for three-axis RCS control system to actively reject that with no requirement for additional fuel consumption. To obtain a high fidelity predictive model on which the performance of PFC greatly depends, the nonlinear coupling multiple-input multiple-output(MIMO) flight dynamics model is parameterized as a state-dependent coefficient form. And based on that, a MIMO PFC algorithm in state space domain for a plant of arbitrary orders is deduced in this paper.The internal uncertainties and external disturbances are lumped as a total disturbance, which is estimated and cancelled timely to further enhance the robustness. The continuous control command synthesised by above controller-rejector tandem is finally modulated by pulse width pulse frequency modulator(PWPF) to on-off signals to meet RCS requirement. The robustness and feasibility of the proposed design are validated by a series of performance comparison simulations with some prominent methods in the presence of significant perturbations and disturbances, as well as measurement noise. 展开更多
关键词 reaction control system(RCS) predictive functional control(PFC) generalized extended state observer(GESO) pulse width pulse frequency(PWPF) multiple-input multiple-output(MIMO)
下载PDF
Design and Simulation of Electro-hydrostatic Actuator with a Built-in Power Regulator 被引量:16
3
作者 Kang Rongjie Jiao Zongxia Wang Shaoping Chen Lisha 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第6期700-706,共7页
The electro-hydrostatic actuator (EHA) is a kind of power-by-wire (PBW) actuator that converts the electrical power into localized hydraulic power for flight control. By removing the central hydraulic power supply... The electro-hydrostatic actuator (EHA) is a kind of power-by-wire (PBW) actuator that converts the electrical power into localized hydraulic power for flight control. By removing the central hydraulic power supply together with hydraulic pipes, an EHA's reliability and efficiency are greatly improved but its frequency width and stiffness decreased. To overcome the drawback, this article proposes a novel structure of EHA associated with a power regulator. Composed of a high-pressure accumulator and a proportional valve, it can store and harness the hydraulic power flexibly according to the changing control requirements. The concept of transferred volume is put forward to estimate the capability of the power regulator. The actuator output position can be kept fixed with a hydraulic lock. The compounded control is specially developed to ensure the actuator system to operate in a correct manner. The simulation results indicate that the new-brand actuator results in efficient expanding of the system frequency width with an optimal power supply. 展开更多
关键词 electro-hydrostatic actuator (EHA) power regulator transferred volume hydraulic lock frequency width STIFFNESS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部