期刊文献+
共找到118,164篇文章
< 1 2 250 >
每页显示 20 50 100
Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid 被引量:1
1
作者 Rui Li Qixuan Lin +3 位作者 Junli Ren Xiaobao Yang Yingxiong Wang Lingzhao Kong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期311-320,共10页
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural... The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose. 展开更多
关键词 FRUCTOSE Dealuminated-Hb zeolite selective conversion FURFURAL
下载PDF
Recent developments in selective laser processes for wearable devices 被引量:1
2
作者 Youngchan Kim Eunseung Hwang +3 位作者 Chang Kai Kaichen Xu Heng Pan Sukjoon Hong 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期517-547,共31页
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d... Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices. 展开更多
关键词 selective laser process Wearable device Transformative approach Laser-induced graphene Ablation SINTERING Synthesis
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
3
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
Strategies of selective electroreduction of aqueous nitrate to N_(2) in chloride-free system:A critical review
4
作者 Fukuan Li Weizhe Zhang +2 位作者 Peng Zhang Ao Gong Kexun Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期198-216,共19页
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-... Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation. 展开更多
关键词 NITRATE CHLORIDE ELECTROREDUCTION selectIVITY NITROGEN
下载PDF
Cell-type resolved transcriptomic approaches for dissecting selective vulnerability in neurodgeneration
5
作者 Caleb A.Wood Nicholas M.Tran 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1411-1413,共3页
A common feature among neurodegenerative conditions is that ce rtain neuronal populations are selectively vulnerable to loss(Fu et al.,2018).By corollary,other neurons are selectively resilient,suggesting they may pos... A common feature among neurodegenerative conditions is that ce rtain neuronal populations are selectively vulnerable to loss(Fu et al.,2018).By corollary,other neurons are selectively resilient,suggesting they may possess unique features that support their survival.U nderstanding the basis of neuronal resilience or vulnerability would provide a logical strategy to identify factors that could be targeted therapeutically. 展开更多
关键词 selective TARGETED
下载PDF
Effect of an Airbag-selective Portal Vein Blood Arrester on the Liver after Hepatectomy:A New Technique for Selective Clamping of the Portal Vein
6
作者 Ce-xiong FU Xiao-ri QIN +6 位作者 Jin-song CHEN Jie ZHONG Yu-xu XIE Bi-dan LI Qing-qing FU Fang LI Jin-fang ZHENG 《Current Medical Science》 SCIE CAS 2024年第2期380-390,共11页
Objective:A novel technique was explored using an airbag-selective portal vein blood arrester that circumvents the need for an intraoperative assessment of anatomical variations in patients with complex intrahepatic s... Objective:A novel technique was explored using an airbag-selective portal vein blood arrester that circumvents the need for an intraoperative assessment of anatomical variations in patients with complex intrahepatic space-occupying lesions.Methods:Rabbits undergoing hepatectomy were randomly assigned to 4 groups:intermittent portal triad clamping(PTC),intermittent portal vein clamping(PVC),intermittent portal vein blocker with an airbag-selective portal vein blood arrester(APC),and without portal blood occlusion(control).Hepatic ischemia and reperfusion injury were assessed by measuring the 7-day survival rate,blood loss,liver function,hepatic pathology,hepatic inflammatory cytokine infiltration,hepatic malondialdehyde levels,and proliferating cell nuclear antigen levels.Results:Liver damage was substantially reduced in the APC and PVC groups.The APC animals exhibited transaminase levels similar to or less oxidative stress damage and inflammatory hepatocellular injury compared to those exhibited by the PVC animals.Bleeding was significantly higher in the control group than in the other groups.The APC group had less bleeding than the PVC group because of the avoidance of portal vein skeletonization during hepatectomy.Thus,more operative time was saved in the APC group than in the PVC group.Moreover,the total 7-day survival rate in the APC group was higher than that in the PTC group.Conclusion:Airbag-selective portal vein blood arresters may help protect against hepatic ischemia and reperfusion injury in rabbits undergoing partial hepatectomy.This technique may also help prevent liver damage in patients requiring hepatectomy. 展开更多
关键词 HEPATECTOMY portal vein hepatic damage selective clamping
下载PDF
Unlocking the potential of ultra-thin two-dimensional antimony materials:Selective growth and carbon coating for efficient potassium-ion storage
7
作者 Dongyu Zhang Zhaomin Wang +4 位作者 Yabin Shen Yeguo Zou Chunli Wang Limin Wang Yong Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期440-449,共10页
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b... Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries. 展开更多
关键词 ANTIMONY Two-dimensional materials selective growth Nitrogen-doped carbon Potassium-ion batteries
下载PDF
Mechanism of selective laser trabeculoplasty:a systemic review
8
作者 Yu-Feng Chen Wen Zeng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期963-968,共6页
Although selective laser trabeculoplasty(SLT)is a recognized method for the treatment of glaucoma,the exact changes in the target tissue and mechanism for its intraocular pressure lowing effect are still unclear.The p... Although selective laser trabeculoplasty(SLT)is a recognized method for the treatment of glaucoma,the exact changes in the target tissue and mechanism for its intraocular pressure lowing effect are still unclear.The purpose of this review is to summarize the potential mechanisms of SLT on trabecular meshwork both in vivo and in vitro,so as to reveal the potential mechanism of SLT.SLT may induce immune or inflammatory response in trabecular meshwork(TM)induced by possible oxidative damage etc,and remodel extracellular matrix.It may also induce monocytes to aggregate in TM tissue,increase Schlemm’s canal(SC)cell conductivity,disintegrate cell junction and promote permeability through autocrine and paracrine forms.This provides a theoretical basis for SLT treatment in glaucoma. 展开更多
关键词 MECHANISMS selective laser trabeculoplasty GLAUCOMA trabecular meshwork
下载PDF
Synergy of heterogeneous Co/Ni dual atoms enabling selective C-O bond scission of lignin coupling with in-situ N-functionalization
9
作者 Baoyu Wang Jinshu Huang +3 位作者 Hongguo Wu Ximing Yan Yuhe Liao Hu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期16-25,共10页
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst... Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin. 展开更多
关键词 Biomass conversion Heterogeneous catalysis LIGNIN Dual-atom catalyst selective C-ocleavage
下载PDF
Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis
10
作者 Yanran Zhu Yue Zhou +4 位作者 Qian Chen Rongqiang Fu Zhaoming Liu Liang Ge Tongwen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期45-57,共13页
Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a po... Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization. 展开更多
关键词 selective electrodialysis WASTEWATER Monovalent cation permselective membranes SEPARATION RECOVERY
下载PDF
Non-Targeted Metabolomics Reveals the Metabolic Alterations in Response to Artificial Selective Breeding in the Fast-Growing Strains of Pacific Oyster
11
作者 HU Boyang TIAN Yuan +1 位作者 LIU Shikai LI Qi 《Journal of Ocean University of China》 CAS CSCD 2024年第2期518-528,共11页
Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improv... Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improved strain with fast-growing trait.However,little is known about the metabolic signatures of the fast-growing trait.In the present study,the non-targeted metabolomics was performed to analyze the metabolic signatures of adductor muscle tissue in one-year old Pacific oysters from fast-growing strain and the wild population.A total of 7767 and 10174 valid peaks were extracted and quantified in ESI^(+)and ESI^(−)modes,resulting in 399 and 381 annotated metabolites,respectively.PCA and OPLS-DA revealed that considerable separation among samples from fastgrowing strain and wild population,suggesting the differences in metabolic signatures.Meanwhile,81 significantly different metabolites(SDMs)were identified in the comparisons between fast-growing strain and wild population,based on the strict thresholds.It was found that there were highly correlation and conserved coordination among these SDMs.KEGG enrichment analysis indicated that the SDMs were tightly related to pantothenate and CoA biosynthesis,steroid hormone biosynthesis,riboflavin metabolism,and arginine and proline metabolism.Of them,the CoA biosynthesis and metabolism,affected by pantetheine and pantothenic acid,might be important for the growth of Pacific oysters under artificial selective breeding.The study provides the comprehensive views of metabolic signatures in response to artificially selective breeding,and is helpful to better understand the molecular mechanism of fastgrowing traits in Pacific oysters. 展开更多
关键词 metabolic signature Pacific oyster artificial selection fast-growing trait
下载PDF
Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid
12
作者 Haijun Yu Dongxing Wang +6 位作者 Shuai Rao Lijuan Duan Cairu Shao Xiaohui Tu Zhiyuan Ma Hongyang Cao Zhiqiang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期688-696,共9页
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri... Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs. 展开更多
关键词 selective leaching oxalic acid sulfuric acid spent lithium-ion batteries
下载PDF
Controlling Reactivity of Palladium Amides for Selective Carbonylation towards Urea and Oxamide Derivatives
13
作者 WANG Jin-hui CAO Yan-wei HE Lin 《分子催化(中英文)》 CAS CSCD 北大核心 2024年第4期297-308,共12页
Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.... Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods. 展开更多
关键词 selectivity control palladium catalysis oxidative carbonylation AMINOCARBONYLATION green reagents
下载PDF
Effect of samarium doping on the activity and sulfur resistance of Ce/MnFeO_(x) catalyst for low-temperature selective catalytic reduction of NO_(x) by ammonia
14
作者 Qiyao Zhang Shuangshuang Zhang +1 位作者 Xu Hu Yongmin Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期272-282,共11页
The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of M... The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test. 展开更多
关键词 SCR Sm doping CATALYST Sulfur resistance In situ DRIFTS selectIVITY
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
15
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy PROCESSABILITY mechanical properties thermal stability
下载PDF
Aqueous electrochemical delithiation of cathode materials as a strategy to selectively recover lithium from waste lithium-ion batteries
16
作者 Pier Giorgio Schiavi Andrea Giacomo Marrani +4 位作者 Olga Russina Ludovica D’Annibale Francesco Amato Francesca Pagnanelli Pietro Altimari 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期144-153,I0004,共11页
Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological... Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological alternative is the electrochemical oxidation of the cathode materials,whereby lithium can be deintercalated and transferred to an electrolyte solution without the aid of chemical extracting compounds.This article investigates the potential to selectively recover Li from LIB cathode materials by direct electrochemical extraction in aqueous solutions.The process allowed to recovering up to 98%of Li from high-purity commercial cathode materials(LiMn_(2)O_(4),LiCoO_(2),and Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2))with a faradaic efficiency of 98%and negligible co-extraction of Co,Ni,and Mn.The process was then applied to recover Li from the real waste LIBs black mass obtained by the physical treatment of electric vehicle battery packs.This black mass contained graphite,conductive carbon,and metal impurities from current collectors and steel cases,which significantly influenced the evolution and performances of Li electrochemical extraction.Particularly,due to concomitant oxidation of impurities,lithium extraction yields and faradaic efficiencies were lower than those obtained with high-purity cathode materials.Copper oxidation was found to occur within the voltage range investigated,but it could not quantitatively explain the reduced Li extraction performances.In fact,a detailed investigation revealed that above 1.3 V vs.Ag/Ag Cl,conductive carbon can be oxidized,contributing to the decreased Li extraction.Based on the reported experimental results,guidelines were provided that quantitatively enable the extraction of Li from the black mass,while preventing the simultaneous oxidation of impurities and,consequently,reducing the energy consumption of the proposed Li recovery method. 展开更多
关键词 Lithium recovery Lithium-ion batteries recycling Electrochemical lithium extraction Lithium selective EXTRACTION
下载PDF
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
17
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
A Selective‑Response Hypersensitive Bio‑Inspired Strain Sensor Enabled by Hysteresis Effect and Parallel Through‑Slits Structures
18
作者 Qun Wang Zhongwen Yao +8 位作者 Changchao Zhang Honglie Song Hanliang Ding Bo Li Shichao Niu Xinguan Huang Chuanhai Chen Zhiwu Han Luquan Ren 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期139-153,共15页
Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into... Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment. 展开更多
关键词 Bio-inspired strain sensors Hysteresis effect HYPERSENSITIVITY selective frequency response Health monitoring applications
下载PDF
Synergistic strengthening mechanism of Ca^(2+)-sodium silicate to selective separation of feldspar and quartz
19
作者 Bo Lin Jingzhong Kuang +3 位作者 Yiqiang Yang Zheyu Huang Delong Yang Mingming Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1985-1995,共11页
Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi... Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided. 展开更多
关键词 FELDSPAR QUARTZ Ca^(2+)-sodium silicate selective adsorption flotation separation
下载PDF
Single atom doping induced charge-specific distribution of Cu1-TiO_(2)for selective aniline oxidation via a new mechanism
20
作者 Jiaheng Qin Wantong Zhao +6 位作者 Jie Song Nan Luo Zheng-Lan Ma Baojun Wang Jiantai Ma Riguang Zhang Yu Long 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期98-111,共14页
Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile... Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2))is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2)from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2)did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2)catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2)generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites. 展开更多
关键词 Single atom doped metal oxide Aniline oxidation selectivity New mechanism Active site
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部