This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic ...The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder.展开更多
Run-length limited(RLL)codes can facilitate reliable data transmission and provide flicker-free illumination in visible light communication(VLC)systems.We propose novel high-rate RLL codes,which can improve error perf...Run-length limited(RLL)codes can facilitate reliable data transmission and provide flicker-free illumination in visible light communication(VLC)systems.We propose novel high-rate RLL codes,which can improve error performance and mitigate flicker.Two RLL coding schemes are developed by designing the finite-state machine to further enhance the coding gain by improving the minimum Hamming distance and using the state-splitting method to realize small state numbers.In our RLL code design,the construction of the codeword set is critical.This codeword set is designed considering the set-partitioning algorithm criterion.The flicker control and minimum Hamming distance of the various proposed RLL codes are described in detail,and the flicker performances of different codes are compared based on histograms.Simulations are conducted to evaluate the proposed RLL codes in on-off keying modulation VLC systems.Simulation results demonstrate that the proposed RLL codes achieve superior error performance to the existing RLL codes.展开更多
This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code M...This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code Modulation (DPCM), and run-length coding techniques for the compression of different parts of the signal;where lossless compression is adopted in clinically relevant parts and lossy compression is used in those parts that are not clinically relevant. The proposed compression algorithm begins by segmenting the ECG signal into its main components (P-waves, QRS-complexes, T-waves, U-waves and the isoelectric waves). The resulting waves are grouped into Region of Interest (RoI) and Non Region of Interest (NonRoI) parts. Consequently, lossless and lossy compression schemes are applied to the RoI and NonRoI parts respectively. Ideally we would like to compress the signal losslessly, but in many applications this is not an option. Thus, given a fixed bit budget, it makes sense to spend more bits to represent those parts of the signal that belong to a specific RoI and, thus, reconstruct them with higher fidelity, while allowing other parts to suffer larger distortion. For this purpose, the correlation between the successive samples of the RoI part is utilized by adopting DPCM approach. However the NonRoI part is compressed using DWT, thresholding and coding techniques. The wavelet transformation is used for concentrating the signal energy into a small number of transform coefficients. Compression is then achieved by selecting a subset of the most relevant coefficients which afterwards are efficiently coded. Illustrative examples are given to demonstrate thresholding based on energy packing efficiency strategy, coding of DWT coefficients and data packetizing. The performance of the proposed algorithm is tested in terms of the compression ratio and the PRD distortion metrics for the compression of 10 seconds of data extracted from records 100 and 117 of MIT-BIH database. The obtained results revealed that the proposed technique possesses higher compression ratios and lower PRD compared to the other wavelet transformation techniques. The principal advantages of the proposed approach are: 1) the deployment of different compression schemes to compress different ECG parts to reduce the correlation between consecutive signal samples;and 2) getting high compression ratios with acceptable reconstruction signal quality compared to the recently published results.展开更多
In the compression of massive compound power quality disturbance(PQD) signals in active distribution networks, the compression ratio(CR) and reconstruction error(RE) act as a pair of contradictory indicators, and trad...In the compression of massive compound power quality disturbance(PQD) signals in active distribution networks, the compression ratio(CR) and reconstruction error(RE) act as a pair of contradictory indicators, and traditional compression algorithms have difficulties in simultaneously satisfying a high CR and low RE. To improve the CR and reduce the RE, a hybrid compression method that combines a strong tracking Kalman filter(STKF), sparse decomposition, Huffman coding, and run-length coding is proposed in this study. This study first uses a sparse decomposition algorithm based on a joint dictionary to separate the transient component(TC) and the steady-state component(SSC) in the PQD. The TC is then compressed by wavelet analysis and by Huffman and runlength coding algorithms. For the SSC, values that are greater than the threshold are reserved, and the compression is finally completed. In addition, the threshold of the wavelet depends on the fading factor of the STKF to obtain a high CR. Experimental results of real-life signals measured by fault recorders in a dynamic simulation laboratory show that the CR of the proposed method reaches as high as 50 and the RE is approximately 1.6%, which are better than those of competing methods. These results demonstrate the immunity of the proposed method to the interference of Gaussian noise and sampling frequency.展开更多
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
基金supported by the Shenzhen Government R&D Project under Grant No.JC200903160361A
文摘The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(No.2020QN15)。
文摘Run-length limited(RLL)codes can facilitate reliable data transmission and provide flicker-free illumination in visible light communication(VLC)systems.We propose novel high-rate RLL codes,which can improve error performance and mitigate flicker.Two RLL coding schemes are developed by designing the finite-state machine to further enhance the coding gain by improving the minimum Hamming distance and using the state-splitting method to realize small state numbers.In our RLL code design,the construction of the codeword set is critical.This codeword set is designed considering the set-partitioning algorithm criterion.The flicker control and minimum Hamming distance of the various proposed RLL codes are described in detail,and the flicker performances of different codes are compared based on histograms.Simulations are conducted to evaluate the proposed RLL codes in on-off keying modulation VLC systems.Simulation results demonstrate that the proposed RLL codes achieve superior error performance to the existing RLL codes.
文摘This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code Modulation (DPCM), and run-length coding techniques for the compression of different parts of the signal;where lossless compression is adopted in clinically relevant parts and lossy compression is used in those parts that are not clinically relevant. The proposed compression algorithm begins by segmenting the ECG signal into its main components (P-waves, QRS-complexes, T-waves, U-waves and the isoelectric waves). The resulting waves are grouped into Region of Interest (RoI) and Non Region of Interest (NonRoI) parts. Consequently, lossless and lossy compression schemes are applied to the RoI and NonRoI parts respectively. Ideally we would like to compress the signal losslessly, but in many applications this is not an option. Thus, given a fixed bit budget, it makes sense to spend more bits to represent those parts of the signal that belong to a specific RoI and, thus, reconstruct them with higher fidelity, while allowing other parts to suffer larger distortion. For this purpose, the correlation between the successive samples of the RoI part is utilized by adopting DPCM approach. However the NonRoI part is compressed using DWT, thresholding and coding techniques. The wavelet transformation is used for concentrating the signal energy into a small number of transform coefficients. Compression is then achieved by selecting a subset of the most relevant coefficients which afterwards are efficiently coded. Illustrative examples are given to demonstrate thresholding based on energy packing efficiency strategy, coding of DWT coefficients and data packetizing. The performance of the proposed algorithm is tested in terms of the compression ratio and the PRD distortion metrics for the compression of 10 seconds of data extracted from records 100 and 117 of MIT-BIH database. The obtained results revealed that the proposed technique possesses higher compression ratios and lower PRD compared to the other wavelet transformation techniques. The principal advantages of the proposed approach are: 1) the deployment of different compression schemes to compress different ECG parts to reduce the correlation between consecutive signal samples;and 2) getting high compression ratios with acceptable reconstruction signal quality compared to the recently published results.
基金supported in part by the National Natural Science Foundation of China (No.52077089)。
文摘In the compression of massive compound power quality disturbance(PQD) signals in active distribution networks, the compression ratio(CR) and reconstruction error(RE) act as a pair of contradictory indicators, and traditional compression algorithms have difficulties in simultaneously satisfying a high CR and low RE. To improve the CR and reduce the RE, a hybrid compression method that combines a strong tracking Kalman filter(STKF), sparse decomposition, Huffman coding, and run-length coding is proposed in this study. This study first uses a sparse decomposition algorithm based on a joint dictionary to separate the transient component(TC) and the steady-state component(SSC) in the PQD. The TC is then compressed by wavelet analysis and by Huffman and runlength coding algorithms. For the SSC, values that are greater than the threshold are reserved, and the compression is finally completed. In addition, the threshold of the wavelet depends on the fading factor of the STKF to obtain a high CR. Experimental results of real-life signals measured by fault recorders in a dynamic simulation laboratory show that the CR of the proposed method reaches as high as 50 and the RE is approximately 1.6%, which are better than those of competing methods. These results demonstrate the immunity of the proposed method to the interference of Gaussian noise and sampling frequency.