The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity ca...The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.展开更多
Tunability,ultracompact design,high group index,low loss,and broad bandwidth are desired properties for integrated optical delay lines(ODLs).However,those properties are challenging to achieve simultaneously in the vi...Tunability,ultracompact design,high group index,low loss,and broad bandwidth are desired properties for integrated optical delay lines(ODLs).However,those properties are challenging to achieve simultaneously in the visible region.This paper proposes a tunable hexagonal boron nitride topological optical delay line(ODL)in the visible region based on valley photonic crystals.The topological edge state from the beard-type boundary allows the achievement of an ultralow group velocity close to zero,which results in a large group index of 629 at 645 nm.Moreover,we demonstrate tuning of the slow-light wavelength and optical delay times with electrically tunable liquid crystals by applying external voltage.The device has an ultracompact size of 5μm×2.7μm with an optical delay distance of 25a(a is the lattice constant)and a delay time of 12 ps.Our design can provide a new possibility for designing ODLs working in the visible region for optical communication and quantum computing systems.展开更多
Packet contention is a key issue in optical packet switch (OPS) networks and finds a viable solution by including optical buffering techniques incorporating fiber delay lines (FDLs) in the switch architecture. The pre...Packet contention is a key issue in optical packet switch (OPS) networks and finds a viable solution by including optical buffering techniques incorporating fiber delay lines (FDLs) in the switch architecture. The present paper proposes a novel switch architecture for packet contention resolution in synchronous OPS network employing the packet circulation in FDLs in a synchronized manner. A mathematical model for the proposed switch architecture is developed employing packet queuing control to estimate the blocking probability for the incoming traffic. The switch performance is analyzed with a suitable contention resolution al-gorithm through the computer simulation. The simulation results substantiate the proposed model for the switch architecture.展开更多
We demonstrate the stabilization of an optical frequency comb(OFC) using a segment of fiber delay line as a reference. A mode-locked Er-doped fiber laser is phase locked to a kilometer-long fiber delay line using thre...We demonstrate the stabilization of an optical frequency comb(OFC) using a segment of fiber delay line as a reference. A mode-locked Er-doped fiber laser is phase locked to a kilometer-long fiber delay line using three different schemes. The short-term stability of the comb modes in the OFC stabilized by these schemes is obviously enhanced, down to the 10;level at millisecond average time. Among these three schemes, phase locking two bunches of comb modes in the OFC to the same fiber delay line exhibits the lowest residual phase noise. Fiber-delay-line-referenced OFCs can provide reliable laser sources in precise metrology owing to the advances of low cost, compactness, and high integration.展开更多
Optical delay lines(ODLs) are one of the key enabling components in photonic integrated circuits and systems.They are widely used in time-division multiplexing, optical signal synchronization and buffering, microwav...Optical delay lines(ODLs) are one of the key enabling components in photonic integrated circuits and systems.They are widely used in time-division multiplexing, optical signal synchronization and buffering, microwave signal processing, beam forming and steering, etc. The development of integrated photonics pushes forward the miniaturization of ODLs, offering improved performances in terms of stability, tuning speed, and power consumption. The integrated ODLs can be implemented using various structures, such as single or coupled resonators, gratings, photonic crystals, multi-path switchable structures, and recirculating loop structures.The delay tuning in ODLs is enabled by either changing the group refractive index of the waveguide or changing the length of the optical path. This paper reviews the recent development of integrated ODLs with a focus on their abundant applications and flexible implementations. The challenges and potentials of each type of ODLs are pointed out.展开更多
We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs ...We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.展开更多
Subwavelength grating(SWG) waveguides in silicon-on-insulator are emerging as an enabling technology for implementing compact, high-performance photonic integrated devices and circuits for signal processing and sensin...Subwavelength grating(SWG) waveguides in silicon-on-insulator are emerging as an enabling technology for implementing compact, high-performance photonic integrated devices and circuits for signal processing and sensing applications. We provide an overview of our recent work on developing wavelength selective SWG waveguide filters based on Bragg gratings and ring resonators, as well as optical delay lines. These components increase the SWG waveguide component toolbox and can be used to realize more complex photonic integrated circuits with enhanced or new functionality.展开更多
We report an 8-channel wavelength-mode optical pulse interleaver on a silicon photonic chip.Wavelength-and mode-division multiplexing techniques are combined to increase the repetition rate of the pulses without addin...We report an 8-channel wavelength-mode optical pulse interleaver on a silicon photonic chip.Wavelength-and mode-division multiplexing techniques are combined to increase the repetition rate of the pulses without adding the complexity of a single dimension.The interleaver uses a cascaded Mach–Zehnder interferometer architecture as a wavelength-division(de)multiplexer,an asymmetric directional coupler as a mode(de)multiplexer,and various lengths of silicon waveguides as delay lines.A pulse sequence with a time interval of 125 ps is implemented with the repetition rate being eight times that of the initial one.The demonstrated wavelength-mode multiplexing approach opens a new route for the generation of high-speed optical pulses.展开更多
文摘The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.
基金This work was supported by the National Key Research and Development Program of China(No.2022YFA1404201)the Australian Research Council Future Fellowship(No.FT220100559)the National Natural Science Foundation of China(NSFC)(No.U23A20375).
文摘Tunability,ultracompact design,high group index,low loss,and broad bandwidth are desired properties for integrated optical delay lines(ODLs).However,those properties are challenging to achieve simultaneously in the visible region.This paper proposes a tunable hexagonal boron nitride topological optical delay line(ODL)in the visible region based on valley photonic crystals.The topological edge state from the beard-type boundary allows the achievement of an ultralow group velocity close to zero,which results in a large group index of 629 at 645 nm.Moreover,we demonstrate tuning of the slow-light wavelength and optical delay times with electrically tunable liquid crystals by applying external voltage.The device has an ultracompact size of 5μm×2.7μm with an optical delay distance of 25a(a is the lattice constant)and a delay time of 12 ps.Our design can provide a new possibility for designing ODLs working in the visible region for optical communication and quantum computing systems.
文摘Packet contention is a key issue in optical packet switch (OPS) networks and finds a viable solution by including optical buffering techniques incorporating fiber delay lines (FDLs) in the switch architecture. The present paper proposes a novel switch architecture for packet contention resolution in synchronous OPS network employing the packet circulation in FDLs in a synchronized manner. A mathematical model for the proposed switch architecture is developed employing packet queuing control to estimate the blocking probability for the incoming traffic. The switch performance is analyzed with a suitable contention resolution al-gorithm through the computer simulation. The simulation results substantiate the proposed model for the switch architecture.
基金This work was supported by the National Natural Science Foundation of China(Nos.61975144 and 61827821)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.17JCJQJC43500)。
文摘We demonstrate the stabilization of an optical frequency comb(OFC) using a segment of fiber delay line as a reference. A mode-locked Er-doped fiber laser is phase locked to a kilometer-long fiber delay line using three different schemes. The short-term stability of the comb modes in the OFC stabilized by these schemes is obviously enhanced, down to the 10;level at millisecond average time. Among these three schemes, phase locking two bunches of comb modes in the OFC to the same fiber delay line exhibits the lowest residual phase noise. Fiber-delay-line-referenced OFCs can provide reliable laser sources in precise metrology owing to the advances of low cost, compactness, and high integration.
文摘Optical delay lines(ODLs) are one of the key enabling components in photonic integrated circuits and systems.They are widely used in time-division multiplexing, optical signal synchronization and buffering, microwave signal processing, beam forming and steering, etc. The development of integrated photonics pushes forward the miniaturization of ODLs, offering improved performances in terms of stability, tuning speed, and power consumption. The integrated ODLs can be implemented using various structures, such as single or coupled resonators, gratings, photonic crystals, multi-path switchable structures, and recirculating loop structures.The delay tuning in ODLs is enabled by either changing the group refractive index of the waveguide or changing the length of the optical path. This paper reviews the recent development of integrated ODLs with a focus on their abundant applications and flexible implementations. The challenges and potentials of each type of ODLs are pointed out.
文摘We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.
基金supported in part by the NSERC NGON and Si EPIC CREATE programs,NSERC SPG,and the Royal Society International Exchanges Scheme 2012/R2
文摘Subwavelength grating(SWG) waveguides in silicon-on-insulator are emerging as an enabling technology for implementing compact, high-performance photonic integrated devices and circuits for signal processing and sensing applications. We provide an overview of our recent work on developing wavelength selective SWG waveguide filters based on Bragg gratings and ring resonators, as well as optical delay lines. These components increase the SWG waveguide component toolbox and can be used to realize more complex photonic integrated circuits with enhanced or new functionality.
文摘We report an 8-channel wavelength-mode optical pulse interleaver on a silicon photonic chip.Wavelength-and mode-division multiplexing techniques are combined to increase the repetition rate of the pulses without adding the complexity of a single dimension.The interleaver uses a cascaded Mach–Zehnder interferometer architecture as a wavelength-division(de)multiplexer,an asymmetric directional coupler as a mode(de)multiplexer,and various lengths of silicon waveguides as delay lines.A pulse sequence with a time interval of 125 ps is implemented with the repetition rate being eight times that of the initial one.The demonstrated wavelength-mode multiplexing approach opens a new route for the generation of high-speed optical pulses.