The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo...The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.展开更多
To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based ...To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.展开更多
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method...To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.展开更多
Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propaga- tion in heterogeneous earth medium. Since its derivative operator is global, this method is commonly consid...Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propaga- tion in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.展开更多
A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numeric...A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao's transmitting boundary and viscous-spring boundary with Liu's method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ_1 and φ_2, the rational distance between the observation point and the MDRM boundary is suggested. When φ_1 >2 or φ_2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.展开更多
Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,...Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.展开更多
Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear ...Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.展开更多
Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagneti...Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.展开更多
A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term ...A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term as a slow-varying parameter,a generalized autonomous fast subsystem can be defined,the equilibrium branches as well as the bifurcations of which can be employed to account for the mechanism of the bursting oscillations by combining the transformed phase portrait introduced.As an example,a typical periodically excited Hartley model is used to demonstrate the validness of the method,in which the exciting frequency is far less than the natural frequency.The equilibrium branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter are presented.Bursting oscillations for two typical cases are considered,which reveals that,fold bifurcation may cause the the trajectory to jump between different equilibrium branches,while Hopf bifurcation may cause the trajectory to oscillate around the stable limit cycle.展开更多
In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can be...In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can better suppress the numerical instability in some extreme models, and the computational speed of finite-element method and the dynamic range are greatly increased using this HPML. We use the finite-element method with a hybrid PML to model the acoustic reflection of the interface when wireline and well logging while drilling (LWD), in a formation with a reflector outside the borehole. The simulation results suggests that the PS- and SP- reflected waves arrive at the same time when the inclination between the well and the outer interface is zero, and the difference in arrival times increases with increasing dip angle. When there are fractures outside the well, the reflection signal is clearer in the subsequent reflection waves and may be used to identify the fractured zone. The difference between the dominant wavelength and the model scale shows that LWD reflection logging data are of higher resolution and quality than wireline acoustic reflection logging.展开更多
Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), th...Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), the inversion accuracy of the traditional singular value decomposition (SVD) inversion method reduces with a decrease of SNR. In order to enhance the inversion accuracy and improve robustness of the inversion method to the SNR, an improved inversion method, based on damping factor and spectrum component residual correction, is proposed in this study. The numerical inversion results show that the oscillation of the RTS derived from the SVD method increased with a decrease of SNR, which makes it impossible to get accurate inversion components. However, the SNR has little influence on inversion components of the improved method, and the RTS has high inversion accuracy and robustness. Moreover, RTS derived from core sample data is basically in accord with the pore-size distribution curve, and the RTS derived from the actual induced polarization logging data is smooth and continuous, which indicates that the improved method is practicable.展开更多
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model ...Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.展开更多
The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenar...The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.展开更多
The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite n...The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given.展开更多
A higher-order boundary element method(HOBEM) for simulating the fully nonlinear regular wave propagation and diffraction around a fixed vertical circular cylinder is investigated. The domain decomposition method with...A higher-order boundary element method(HOBEM) for simulating the fully nonlinear regular wave propagation and diffraction around a fixed vertical circular cylinder is investigated. The domain decomposition method with continuity conditions enforced on the interfaces between the adjacent sub-domains is implemented for reducing the computational cost. By adjusting the algorithm of iterative procedure on the interfaces, four types of coupling strategies are established, that is, Dirchlet/Dirchlet-Neumman/Neumman(D/D-N/N), Dirchlet-Neumman(D-N),Neumman-Dirchlet(N-D) and Mixed Dirchlet-Neumman/Neumman-Dirchlet(Mixed D-N/N-D). Numerical simulations indicate that the domain decomposition methods can provide accurate results compared with that of the single domain method. According to the comparisons of computational efficiency, the D/D-N/N coupling strategy is recommended for the wave propagation problem. As for the wave-body interaction problem, the Mixed D-N/N-D coupling strategy can obtain the highest computational efficiency.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. ...A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. It spans simultaneously wide range of exponential decay rates with multi scaling and does not suffer from zero crossing. These two conditions are necessary for many physical problems. For comparison, the method is used to solve different problems and compared with analytical and published results. The comparison exhibits the strengths and accuracy of the presented basis set.展开更多
The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully disc...The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.展开更多
In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve t...In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve the iterative convergence. And the matrix equations are solved using the multifrontal algorithm. The resulting CPU time is greatly reduced.Finally, a number of numerical examples are given to illustrate its accuracy and efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2022020579)the Newton Advanced Fellowships by the Royal Society(Grant No.NAF\R1\180304).
文摘The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.
基金Project supported by National Basic Research Program of China(973 Program) (6131380301) National Natural Science Foundation of China (61001050).
文摘To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
文摘To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.
基金National Natural Science Foundation of China (40474012 and 40521002)
文摘Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propaga- tion in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.
基金National Natural Science Foundation of China under Grant Nos.91315301,51478279the State Key Laboratory Basic Theory Foundation of the Ministry of Science and Technology of China under the Grant SLDRCE08-A-07
文摘A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao's transmitting boundary and viscous-spring boundary with Liu's method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ_1 and φ_2, the rational distance between the observation point and the MDRM boundary is suggested. When φ_1 >2 or φ_2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.
基金supported by the Office of Naval Research (Grant No.N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement No. (NA17RJ1227),U.S. Department of Commerce
文摘Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China
文摘Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.
基金supported by the National Natural Science Foundation of China(Grants11632008 and 11872189)
文摘A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term as a slow-varying parameter,a generalized autonomous fast subsystem can be defined,the equilibrium branches as well as the bifurcations of which can be employed to account for the mechanism of the bursting oscillations by combining the transformed phase portrait introduced.As an example,a typical periodically excited Hartley model is used to demonstrate the validness of the method,in which the exciting frequency is far less than the natural frequency.The equilibrium branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter are presented.Bursting oscillations for two typical cases are considered,which reveals that,fold bifurcation may cause the the trajectory to jump between different equilibrium branches,while Hopf bifurcation may cause the trajectory to oscillate around the stable limit cycle.
基金supported by the National Natural Science Foundation of China(No.41204094)Science Foundation of China University of Petroleum,Beijing(No.2462015YQ0506)
文摘In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can better suppress the numerical instability in some extreme models, and the computational speed of finite-element method and the dynamic range are greatly increased using this HPML. We use the finite-element method with a hybrid PML to model the acoustic reflection of the interface when wireline and well logging while drilling (LWD), in a formation with a reflector outside the borehole. The simulation results suggests that the PS- and SP- reflected waves arrive at the same time when the inclination between the well and the outer interface is zero, and the difference in arrival times increases with increasing dip angle. When there are fractures outside the well, the reflection signal is clearer in the subsequent reflection waves and may be used to identify the fractured zone. The difference between the dominant wavelength and the model scale shows that LWD reflection logging data are of higher resolution and quality than wireline acoustic reflection logging.
基金supported by a project from the Youth Science Foundation of the National Natural Science Foundation of China (11104089)
文摘Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), the inversion accuracy of the traditional singular value decomposition (SVD) inversion method reduces with a decrease of SNR. In order to enhance the inversion accuracy and improve robustness of the inversion method to the SNR, an improved inversion method, based on damping factor and spectrum component residual correction, is proposed in this study. The numerical inversion results show that the oscillation of the RTS derived from the SVD method increased with a decrease of SNR, which makes it impossible to get accurate inversion components. However, the SNR has little influence on inversion components of the improved method, and the RTS has high inversion accuracy and robustness. Moreover, RTS derived from core sample data is basically in accord with the pore-size distribution curve, and the RTS derived from the actual induced polarization logging data is smooth and continuous, which indicates that the improved method is practicable.
基金the State Key Program of National Natural Science of China under Grant No.51138001Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51121005Open Research Fund Program of State key Laboratory of Hydro science and Engineering under Grant No.shlhse-2010-C-03
文摘Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.
基金National Natural Science Foundation of China under Grant No.51378107the Fundamental Research Funds for the Central Universities and Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.KYLX-0158the National Natural Science Foundation under Grant No.CMMI-1227962
文摘The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.
基金This work was supported by the China State Major Key Project for Basic Researches Science Fund of the Ministry of Education
文摘The author studies the infinite element method for the boundary value problems of second order elliptic equations on unbounded and multiply connected domains. The author makes a partition of the domain into infinite number of elements. Without dividing the domain, as usual, into a bounded one and an exterior one, he derives an initial value problem of an ordinary differential equation for the combined stiffness matrix, then obtains the approximate solution with a small amount of computer work. Numerical examples are given.
基金supported by the National Natural Science Foundation of China(Grant No.51490673)the Pre-Research Field Fund Project of the Central Military Commission of China(Grant No.61402070201)the Fundamental Research Funds for the Central Universities(Grant No.DUT18LK09)
文摘A higher-order boundary element method(HOBEM) for simulating the fully nonlinear regular wave propagation and diffraction around a fixed vertical circular cylinder is investigated. The domain decomposition method with continuity conditions enforced on the interfaces between the adjacent sub-domains is implemented for reducing the computational cost. By adjusting the algorithm of iterative procedure on the interfaces, four types of coupling strategies are established, that is, Dirchlet/Dirchlet-Neumman/Neumman(D/D-N/N), Dirchlet-Neumman(D-N),Neumman-Dirchlet(N-D) and Mixed Dirchlet-Neumman/Neumman-Dirchlet(Mixed D-N/N-D). Numerical simulations indicate that the domain decomposition methods can provide accurate results compared with that of the single domain method. According to the comparisons of computational efficiency, the D/D-N/N coupling strategy is recommended for the wave propagation problem. As for the wave-body interaction problem, the Mixed D-N/N-D coupling strategy can obtain the highest computational efficiency.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
文摘A non-orthogonal predefined exponential basis set is used to handle half-bounded domains in multi domain spectral method (MDSM). This approach works extremely well for real-valued semi-infinite differential problems. It spans simultaneously wide range of exponential decay rates with multi scaling and does not suffer from zero crossing. These two conditions are necessary for many physical problems. For comparison, the method is used to solve different problems and compared with analytical and published results. The comparison exhibits the strengths and accuracy of the presented basis set.
基金P.Sun was supported by NSF Grant DMS-1418806C.S.Zhang was partially supported by the National Key Research and Development Program of China(Grant No.2016YFB0201304)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant Nos.91430215,91530323)the Key Research Program of Frontier Sciences of CAS.
文摘The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.
文摘In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve the iterative convergence. And the matrix equations are solved using the multifrontal algorithm. The resulting CPU time is greatly reduced.Finally, a number of numerical examples are given to illustrate its accuracy and efficiency.