期刊文献+
共找到1,157篇文章
< 1 2 58 >
每页显示 20 50 100
New algorithm of mining frequent closed itemsets
1
作者 张亮 任永功 付玉 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期335-338,共4页
A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory an... A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory and time consuming problems. This algorithm maps the transaction database by using a Hash table,gets the support of all frequent itemsets through operating the Hash table and forms a lexicographic subset tree including the frequent itemsets.Efficient pruning methods are used to get the FC-tree including all the minimum frequent closed itemsets through processing the lexicographic subset tree.Finally,frequent closed itemsets are generated from minimum frequent closed itemsets.The experimental results show that the mapping transaction database is introduced in the algorithm to reduce time consumption and to improve the efficiency of the program.Furthermore,the effective pruning strategy restrains the number of candidates,which saves space.The results show that the algorithm is effective. 展开更多
关键词 frequent itemsets frequent closed itemsets minimum frequent closed itemsets maximal frequent closed itemsets frequent closed pattern tree
下载PDF
Double-layer Bayesian Classifier Ensembles Based on Frequent Itemsets 被引量:3
2
作者 Wei-Guo Yi Jing Duan Ming-Yu Lu 《International Journal of Automation and computing》 EI 2012年第2期215-220,共6页
Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensembl... Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms. 展开更多
关键词 Double-layer Bayesian CLASSIFIER frequent itemsets conditional mutual information support.
下载PDF
Backward Support Computation Method for Positive and Negative Frequent Itemset Mining
3
作者 Mrinmoy Biswas Akash Indrani Mandal Md. Selim Al Mamun 《Journal of Data Analysis and Information Processing》 2023年第1期37-48,共12页
Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on p... Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on positive itemsets generated from frequently occurring itemsets (PFIS). However, there has been a significant study focused on infrequent itemsets with utilization of negative association rules to mine interesting frequent itemsets (NFIS) from transactions. In this work, we propose an efficient backward calculating negative frequent itemset algorithm namely EBC-NFIS for computing backward supports that can extract both positive and negative frequent itemsets synchronously from dataset. EBC-NFIS algorithm is based on popular e-NFIS algorithm that computes supports of negative itemsets from the supports of positive itemsets. The proposed algorithm makes use of previously computed supports from memory to minimize the computation time. In addition, association rules, i.e. positive and negative association rules (PNARs) are generated from discovered frequent itemsets using EBC-NFIS algorithm. The efficiency of the proposed algorithm is verified by several experiments and comparing results with e-NFIS algorithm. The experimental results confirm that the proposed algorithm successfully discovers NFIS and PNARs and runs significantly faster than conventional e-NFIS algorithm. 展开更多
关键词 Data Mining Positive frequent itemset Negative frequent itemset Association Rule Backward Support
下载PDF
血清NOX4联合Nrf2水平检测对稳定期COPD患者急性加重的预测价值 被引量:1
4
作者 金小乐 钱晶 +2 位作者 韩英 邵宪萍 张丹 《浙江医学》 CAS 2024年第2期167-171,共5页
目的探讨血清NADPH氧化酶4(NOX4)联合核因子E2相关因子2(Nrf2)水平检测对稳定期慢性阻塞性肺疾病(COPD)患者急性加重的预测价值。方法选取2019年8月至2021年12月在河北北方学院附属第一医院住院治疗并在出院后随访1年内有急性加重发作... 目的探讨血清NADPH氧化酶4(NOX4)联合核因子E2相关因子2(Nrf2)水平检测对稳定期慢性阻塞性肺疾病(COPD)患者急性加重的预测价值。方法选取2019年8月至2021年12月在河北北方学院附属第一医院住院治疗并在出院后随访1年内有急性加重发作情况的138例稳定期COPD患者作为研究对象,根据出院后1年内急性加重发作次数分为急性加重发作次数≥2次的频发组52例和发作次数≤1次的非频发组86例。比较两组患者临床资料及血清NOX4、Nrf2水平,采用多因素logistic回归分析稳定期COPD患者1年内急性加重频繁发作的影响因素;采用ROC曲线评估NOX4、Nrf2预测稳定期COPD患者1年内急性加重频繁发作的效能。结果频发组患者合并糖尿病比例、血清NOX4水平均高于非频发组,ALB、Nrf2水平均低于非频发组,差异均有统计学意义(均P<0.05)。多因素logistic回归分析显示,合并糖尿病、NOX4水平升高是稳定期COPD患者1年内急性加重频繁发作的危险因素,Nrf2水平升高是稳定期COPD患者1年内急性加重频繁发作的保护因素(均P<0.05);ROC曲线分析显示,血清NOX4及Nrf2水平对稳定期COPD患者1年内急性加重频繁发作具有预测价值,两者联合预测的灵敏度和特异度分别为0.814和0.885。结论血清NOX4和Nrf2有望成为评价COPD患者1年内急性加重频繁发作风险的潜在标志物。 展开更多
关键词 慢性阻塞性肺疾病 急性加重 频繁发作 预测 NADPH氧化酶4 核因子相关因子2
下载PDF
Mining Frequent Closed Itemsets in Large High Dimensional Data
5
作者 余光柱 曾宪辉 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期416-424,共9页
Large high-dimensional data have posed great challenges to existing algorithms for frequent itemsets mining.To solve the problem,a hybrid method,consisting of a novel row enumeration algorithm and a column enumeration... Large high-dimensional data have posed great challenges to existing algorithms for frequent itemsets mining.To solve the problem,a hybrid method,consisting of a novel row enumeration algorithm and a column enumeration algorithm,is proposed.The intention of the hybrid method is to decompose the mining task into two subtasks and then choose appropriate algorithms to solve them respectively.The novel algorithm,i.e.,Inter-transaction is based on the characteristic that there are few common items between or among long transactions.In addition,an optimization technique is adopted to improve the performance of the intersection of bit-vectors.Experiments on synthetic data show that our method achieves high performance in large high-dimensional data. 展开更多
关键词 frequent closed itemsets large highdimensional data row enumeration column enumeration hybrid method
下载PDF
A novel algorithm for frequent itemset mining in data warehouses 被引量:2
6
作者 徐利军 谢康林 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第2期216-224,共9页
Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. Multi... Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. MultiClose respectively computes the results in single dimension tables and merges the results with a very efficient approach. Close itemsets technique is used to improve the performance of the algorithm. The authors propose an efficient implementation for star schemas in which their al- gorithm outperforms state-of-the-art single-table algorithms. 展开更多
关键词 frequent itemset Close itemset Star schema Dimension table Fact table
下载PDF
Frequent Itemset Mining of User’s Multi-Attribute under Local Differential Privacy 被引量:2
7
作者 Haijiang Liu Lianwei Cui +1 位作者 Xuebin Ma Celimuge Wu 《Computers, Materials & Continua》 SCIE EI 2020年第10期369-385,共17页
Frequent itemset mining is an essential problem in data mining and plays a key role in many data mining applications.However,users’personal privacy will be leaked in the mining process.In recent years,application of ... Frequent itemset mining is an essential problem in data mining and plays a key role in many data mining applications.However,users’personal privacy will be leaked in the mining process.In recent years,application of local differential privacy protection models to mine frequent itemsets is a relatively reliable and secure protection method.Local differential privacy means that users first perturb the original data and then send these data to the aggregator,preventing the aggregator from revealing the user’s private information.We propose a novel framework that implements frequent itemset mining under local differential privacy and is applicable to user’s multi-attribute.The main technique has bitmap encoding for converting the user’s original data into a binary string.It also includes how to choose the best perturbation algorithm for varying user attributes,and uses the frequent pattern tree(FP-tree)algorithm to mine frequent itemsets.Finally,we incorporate the threshold random response(TRR)algorithm in the framework and compare it with the existing algorithms,and demonstrate that the TRR algorithm has higher accuracy for mining frequent itemsets. 展开更多
关键词 Local differential privacy frequent itemset mining user’s multi-attribute
下载PDF
FICW: Frequent Itemset Based Text Clustering with Window Constraint
8
作者 ZHOU Chong LU Yansheng ZOU Lei HU Rong 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1345-1351,共7页
Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the s... Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the sequence. In this paper, a novel method named Frequent Itemset-based Clustering with Window (FICW) was proposed, which makes use of the semantic information for text clustering with a window constraint. The experimental results obtained from tests on three (hypertext) text sets show that FICW outperforms the method compared in both clustering accuracy and efficiency. 展开更多
关键词 text clustering frequent itemsets search engine
下载PDF
Mining φ-Frequent Itemset Using FP-Tree
9
作者 李天瑞 《Journal of Modern Transportation》 2001年第1期67-74,共8页
The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of... The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases. 展开更多
关键词 data processing DATABASES φ association rule mining φ frequent itemset FP tree data mining
下载PDF
A Depth-first Algorithm of Finding All Association Rules Generated by a Frequent Itemset
10
作者 武坤 姜保庆 魏庆 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期1-4,9,共5页
The classical algorithm of finding association rules generated by a frequent itemset has to generate all non-empty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and propose... The classical algorithm of finding association rules generated by a frequent itemset has to generate all non-empty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and proposed an improved algorithm. The algorithm finds all consequents layer by layer, so it is breadth-first. In this paper, we propose a new algorithm Generate Rules by using Set-Enumeration Tree (GRSET) which uses the structure of Set-Enumeration Tree and depth-first method to find all consequents of the association rules one by one and get all association rules correspond to the consequents. Experiments show GRSET algorithm to be practicable and efficient. 展开更多
关键词 association rule frequent itemset breath-first depth-first consequent.
下载PDF
FPGA-Based Stream Processing for Frequent Itemset Mining with Incremental Multiple Hashes
11
作者 Kasho Yamamoto Masayuki Ikebe +1 位作者 Tetsuya Asai Masato Motomura 《Circuits and Systems》 2016年第10期3299-3309,共11页
With the advent of the IoT era, the amount of real-time data that is processed in data centers has increased explosively. As a result, stream mining, extracting useful knowledge from a huge amount of data in real time... With the advent of the IoT era, the amount of real-time data that is processed in data centers has increased explosively. As a result, stream mining, extracting useful knowledge from a huge amount of data in real time, is attracting more and more attention. It is said, however, that real- time stream processing will become more difficult in the near future, because the performance of processing applications continues to increase at a rate of 10% - 15% each year, while the amount of data to be processed is increasing exponentially. In this study, we focused on identifying a promising stream mining algorithm, specifically a Frequent Itemset Mining (FIsM) algorithm, then we improved its performance using an FPGA. FIsM algorithms are important and are basic data- mining techniques used to discover association rules from transactional databases. We improved on an approximate FIsM algorithm proposed recently so that it would fit onto hardware architecture efficiently. We then ran experiments on an FPGA. As a result, we have been able to achieve a speed 400% faster than the original algorithm implemented on a CPU. Moreover, our FPGA prototype showed a 20 times speed improvement compared to the CPU version. 展开更多
关键词 Data Mining frequent itemset Mining FPGA Stream Processing
下载PDF
基于滑动窗口含负项的高效用模式挖掘
12
作者 武妍 荀亚玲 马煜 《计算机工程与设计》 北大核心 2024年第3期845-851,共7页
针对传统高效用模式挖掘均未考虑项的效用值为负,以及对流数据处理的时效性问题,提出一种基于滑动窗口的高效用挖掘算法HUPN_SW。利用一种新定义的滑动窗口正负效用列表PNSWU-List,维护挖掘最近批次高效用模式集所需的所有信息,实现有... 针对传统高效用模式挖掘均未考虑项的效用值为负,以及对流数据处理的时效性问题,提出一种基于滑动窗口的高效用挖掘算法HUPN_SW。利用一种新定义的滑动窗口正负效用列表PNSWU-List,维护挖掘最近批次高效用模式集所需的所有信息,实现有效的逐批次挖掘,避免重复的数据库扫描,在不产生候选效用模式集的情况下,直接挖掘出高效用模式,使HUPN_SW有效适应于动态流数据。实验结果表明,HUPN_SW算法在运行时间和可扩展性方面有良好表现。 展开更多
关键词 频繁模式挖掘 滑动窗口 高效用模式挖掘 高效用项集 负效用 流数据 效用列表
下载PDF
基于频繁2-项集的贝叶斯分类器 被引量:2
13
作者 王东 熊世桓 +1 位作者 向程冠 靳宁 《兰州理工大学学报》 CAS 北大核心 2013年第4期99-104,共6页
针对NB分类方法中过于严格的独立性假设,应用频繁2-项集为分类测度,通过放宽独立性假设达到改善分类性能的目的.在训练阶段使用类似Apriori关联规则发现算法挖掘并建立频繁2-项集库,当测试新文档时,文档特征通过竞争搭配生成基于测试文... 针对NB分类方法中过于严格的独立性假设,应用频繁2-项集为分类测度,通过放宽独立性假设达到改善分类性能的目的.在训练阶段使用类似Apriori关联规则发现算法挖掘并建立频繁2-项集库,当测试新文档时,文档特征通过竞争搭配生成基于测试文档的频繁2-项集序列,优先选择类词频率和置信度综合评分最高的频繁2-项集进入概率估算过程,并用频繁2-项集的综合评分置换NB的单项特征概率估计.在不同数据集的实验中显示,基于频繁2-项集的贝叶斯分类器(TIB)的分类精度整体上好于NB分类器,是一种有效的分类方法. 展开更多
关键词 文本分类 朴素贝叶斯分类器 关联规则 项集 频繁项集
下载PDF
基于频繁2-项集的数量关联规则挖掘方法研究 被引量:2
14
作者 游晋峰 冯山 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期128-133,共6页
关联规则挖掘方法自提出以来已有很多改进算法,但均局限于布尔关联规则的挖掘.已有的数量关联规则挖掘主要考虑了连续属性值离散化、最优的数量关联规则挖掘等问题,但存在过小支持度和过小置信度问题.研究了这一问题并提出了一个在频繁2... 关联规则挖掘方法自提出以来已有很多改进算法,但均局限于布尔关联规则的挖掘.已有的数量关联规则挖掘主要考虑了连续属性值离散化、最优的数量关联规则挖掘等问题,但存在过小支持度和过小置信度问题.研究了这一问题并提出了一个在频繁2-项集的基础上挖掘数量关联规则的改进算法.它不仅可以用于典型的购物篮分析,还可以用于购物篮分析不能完成的关联规则挖掘问题,如带数量的捆绑销售问题. 展开更多
关键词 频繁2-项集 APRIORI算法 数量关联规则 布尔关联规则 数据挖掘
下载PDF
P2P网络中最大频繁项集挖掘算法研究 被引量:1
15
作者 邓忠军 宋威 +1 位作者 郑雪峰 王少杰 《计算机应用研究》 CSCD 北大核心 2010年第9期3490-3492,共3页
为解决P2P网络频繁项集挖掘中存在的全体频繁项集数量过多和网络通信开销较大这两个问题,提出了一种在P2P网络中挖掘最大频繁项集的算法P2PMaxSet。首先,该算法只挖掘最大频繁项集,减少了结果的数量;其次,每个节点只需与邻居节点进行结... 为解决P2P网络频繁项集挖掘中存在的全体频繁项集数量过多和网络通信开销较大这两个问题,提出了一种在P2P网络中挖掘最大频繁项集的算法P2PMaxSet。首先,该算法只挖掘最大频繁项集,减少了结果的数量;其次,每个节点只需与邻居节点进行结果交互,节省了大量的通信开销;最后,讨论了网络动态变化时算法的调整策略。实验结果表明,算法P2PMaxSet具有较高的准确率和较少的通信开销。 展开更多
关键词 数据挖掘 P2P网络 最大频繁项集 关联规则
下载PDF
基于Flag-Prefix-Tree的频繁模式挖掘改进算法
16
作者 蒋跃军 郑文 《浙江万里学院学报》 2024年第3期76-81,共6页
稀疏数据集上,条件FP-Tree无法有效压缩且频繁构造开销大,使用伪构造的问题是数据项目未经压缩和过滤导致额外的遍历代价。文章提出了一种简单而新颖的标志前缀树(Flag-Prefix-Tree)和一种新的挖掘稀疏数据集上频繁模式的算法FPT-Mine... 稀疏数据集上,条件FP-Tree无法有效压缩且频繁构造开销大,使用伪构造的问题是数据项目未经压缩和过滤导致额外的遍历代价。文章提出了一种简单而新颖的标志前缀树(Flag-Prefix-Tree)和一种新的挖掘稀疏数据集上频繁模式的算法FPT-Mine。通过Flag-Prefix-Tree中的flag,伪构造条件树可以巧妙地过滤不频繁项目。而且flag可以在挖掘过程中递归地重用,只有非常小的开销,但节省了遍历不频繁项目的大量开销。FPT-Mine以自上向下的顺序遍历Flag-Prefix-Tree,并为每个频繁模式创建一个临时根表(Root table)来伪构造条件树,这样就不需要在每个节点上维护父节点和兄弟节点的链接。此外,FPT-Mine在树上应用了合并技术,这使得FlagPrefix-Tree越来越小。研究表明,FPT-Mine在各种稀疏数据集中具有高性能和可扩展性。FPT-Mine在所有测试数据集中的性能都优于FP-growth,当最小支持度阈值降低时,算法之间的差距增大。 展开更多
关键词 数据挖掘 关联规则 频繁模式 频繁项目集
下载PDF
频繁项集挖掘研究前沿及展望
17
作者 张晴 谭旭 吕欣 《深圳信息职业技术学院学报》 2024年第1期1-14,共14页
频繁项集挖掘是数据挖掘领域的核心任务之一,其目标是发现在数据库中频繁出现的模式。这些模式对于关联规则、分类、异常检测等多个数据挖掘任务都具有重要作用。由于随着项集大小的增加,项集的组合数量呈指数级增长,导致计算复杂性急... 频繁项集挖掘是数据挖掘领域的核心任务之一,其目标是发现在数据库中频繁出现的模式。这些模式对于关联规则、分类、异常检测等多个数据挖掘任务都具有重要作用。由于随着项集大小的增加,项集的组合数量呈指数级增长,导致计算复杂性急剧上升,研究人员一直在努力开发高效的算法来解决这一问题。面向频繁项集挖掘的算法、紧凑表示和前沿应用,深入探讨不同技术的的工作原理、优势和局限性,从而对这一领域的研究现状进行全面总结。最后,进一步探讨了该领域的前沿发展趋势,指出计算效率、基于约束的频繁项集挖掘、模式的可解释性以及算法在不同领域的创新应用等未来潜在研究方向。 展开更多
关键词 频繁项集 数据挖掘 模式增长 关联规则
下载PDF
核因子NF-κB基因多态性与中国人2型糖尿病的相关研究 被引量:4
18
作者 邹伏英 邹大进 《中国医药导报》 CAS 2007年第06X期26-28,共3页
目的:探讨NF-κB的(CA)基因多态性与2型糖尿病(T2DM)及其大血管病变的相关性。方法:采用PCR-荧光法分析了161例2型糖尿病和99例正常健康对照组NF-κB的(CA)重复序列的多态性。结果:①A3(122 bp)、A9(134 bp)等位基因在两组中都比较常见;... 目的:探讨NF-κB的(CA)基因多态性与2型糖尿病(T2DM)及其大血管病变的相关性。方法:采用PCR-荧光法分析了161例2型糖尿病和99例正常健康对照组NF-κB的(CA)重复序列的多态性。结果:①A3(122 bp)、A9(134 bp)等位基因在两组中都比较常见;②A4(124 bp)等位基因的频率在CON组(20.20%)中明显高于T2DM组(2.48%)(χ2=45.935,P<0.0001);③A8等位基因频率在T2DM组(17.08%)中明显高于CON组(6.57%)(χ2=11.926,P<0.0001);④在T2DM组中,合并冠心病组和无冠心病组各等位基因频率无显著性差异。结论:NF-κB1基因在2型糖尿病的易感性上可能起到重要作用:等位基因A8的携带者比等位基因A4的携带者更容易患2型糖尿病。 展开更多
关键词 NF—κB 2型糖尿病 糖尿病大血管病变 多态性 微卫星 基因频率
下载PDF
中医药辨治糖尿病心脏病用药规律分析
19
作者 陈丽霞 郭苗苗 +4 位作者 李儒婷 彭剑飞 张惠玲 王靓 施慧 《陕西中医药大学学报》 2024年第3期74-81,共8页
目的基于现代文献探究糖尿病心脏病的用药规律。方法检索中国知网(CNKI)、中国生物医学文献数据库(CBM)等数据库建库至2021年12月收录的有关中药辨治糖尿病心脏病的文献。分别使用Lantern 5.0、Weka 3.8.5软件,对药物及症状进行隐结构... 目的基于现代文献探究糖尿病心脏病的用药规律。方法检索中国知网(CNKI)、中国生物医学文献数据库(CBM)等数据库建库至2021年12月收录的有关中药辨治糖尿病心脏病的文献。分别使用Lantern 5.0、Weka 3.8.5软件,对药物及症状进行隐结构分析以及药物与药物、药物与证型、药物与症状的频繁项集分析。结果共计文献131篇。数据挖掘分析常用症状51项,包括苔白、面色少华、头晕等;药物使用145味,包括丹参、麦冬、黄芪等;药物功效有补虚、活血化瘀、清热等。药物隐结构模型得到包括补益肝肾、涩精固脱等4类隐类;症状隐结构模型得到气虚、阴虚、阳虚、痰湿等证素。挖掘出药物-药物频繁项集12项,包括川芎+麦冬+丹参等;药物-证型频繁项集17项,其中包括肉桂+五味子+阴阳两虚等;药物-症状频繁项集12项,包括瓜蒌+大便溏+苔白等。结论中药辨治糖尿病心脏病以调补心肾、健脾益气为主,并根据具体证型予以用药,可为临床干预糖尿病心脏病提供参考依据。 展开更多
关键词 糖尿病 心脏病 数据挖掘 隐结构 频繁项集 用药规律
下载PDF
混合属性网络多维多层关联数据智能挖掘算法
20
作者 段雪莹 《智能计算机与应用》 2024年第3期207-211,共5页
针对传统关联数据挖掘算法,强项集挖掘后产生大量候选项集,导致挖掘耗时长、挖掘精度低等问题,提出一种混合属性网络多维多层关联数据智能挖掘算法(Multidimensional Multilayer Associative Data Intelligent Mining Algorithm,MMAD-IM... 针对传统关联数据挖掘算法,强项集挖掘后产生大量候选项集,导致挖掘耗时长、挖掘精度低等问题,提出一种混合属性网络多维多层关联数据智能挖掘算法(Multidimensional Multilayer Associative Data Intelligent Mining Algorithm,MMAD-IM)。计算混合属性网络中随机数据到簇中心的距离,将目标数据分配到距离簇中心最近的簇中,使簇中心固定,完成混合属性网络数据的聚类分析。从聚类完成的数据中提取出有效的基本频繁向量,同时计算数据的候选项集,对哈希表进行扫描,利用改进Apriori算法完成强项集挖掘。以此为基础构建空间关系,获取近似区域与近似点之间的距离,形成待挖掘数据并计算数据的隶属度数值,完成智能挖掘。实验结果表明,所提算法具有较好的数据聚类效果,强项集挖掘后剩余的候选项集数量较少,整体数据挖掘耗时远低于传统算法,挖掘精度高达90%。 展开更多
关键词 多维多层关联数据 聚类 基本频繁向量 强项集 挖掘
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部