A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylen...A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.展开更多
To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is comp...To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.展开更多
LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni...LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material.展开更多
Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study...Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study,we propose a molten salt-assisted synthesis in combination with a Li-refeeding induced aluminum segregation strategy to prepare Li_(5)AlO_(4)-coated single-crystalline slightly Li-rich Li_(1.04)Ni_(0.92)Al_(0.04)O_(2).The symbiotic formation of Li_(5)AlO_(4)from reaction between molten lithium hydroxide and doped aluminum in the bulk ensures a high lattice matching between the Ni-rich oxide and the homogenous conductive Li_(5)AlO_(4)that permits high Li^(+)conductivity.Benefiting from mitigated undesirable side reactions and phase evolution,the Li_(5)AlO_(4)-coated single-crystalline Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)delivers a high specific capacity of220.2 mA h g^(-1)at 0.1 C and considerable rate capability(182.5 mA h g^(-1)at 10 C).Besides,superior capacity retention of 90.8%is obtained at 1/3 C after 100 cycles in a 498.1 mA h pouch full cell.Furthermore,the particulate morphology of Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)remains intact after cycling at a cutoff voltage of 4.3 V,whereas slightly Li-deficient Li_(0.98)Ni_(0.97)Al_(0.05)O_(2)features intragranular cracks and irreversible lattice distortion.The results highlight the value of molten salt-assisted synthesis and Li-refeeding induced elemental segregation strategy to upgrade Ni-based layered oxide cathode materials for advanced Li-ion batteries.展开更多
Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidi...Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidizer ammonium perchlorate(AP)in solid propellants,but also a good performance explosive in itself.However,due to the strong hygroscopicity of ADN,its application in solid propellants and explosives is greatly limited.Solving the hygroscopicity of ADN is the key to realize the wide application of ADN.In this paper,we systematically review the research progress of anti-hygroscopic strategies of ADN coating.The surface coating methods are focusing on solvent volatilization,solvent-non-solvent,melt crystallization and atomic layer deposition technology.The characteristics of the different methods are compared and analyzed,and the basis for the classification and selection of the coating materials are introduced in detail.In addition,the feasibility of material for surface coating of ADN is evaluated by several compatibility analysis methods.It is highly expected that the liquid phase method(solvent volatilization method,solvent-non-solvent method)would be the promising method for future ADN coating because of its effective,safety and facile operation.Furthermore,polymer materials,are the preferred coating materials due to their high viscosity,easy adhesion,good anti-hygroscopic effect,and heat resistance,which make ADN weak hygroscopicity,less sensitive,easier to preserve and good compatibility.展开更多
Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crys...Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crystalline water and vacancies of Fe-PB lattice,the low electrical conductivity,and the dissolution of metal ions lead to limited capacity and poor cycling stability.In this work,a perylene tetracarboxylic dianhydride amine(PTCDA)coating layer is successfully fabricated on the surface of Fe-PB by a liquid-phase method.The aminated PTCDA(PTCA)coating not only increases the specific surface area and electronic conductivity but also effectively reduces the crystalline water and vacancies,which avoids the erosion of Fe-PB by electrolyte.Consequently,the PTCA layer reduces the charge transfer resistance,enhances the Na-ion diffusion coefficient,and improves the structure stability.The PTCA-coated Fe-PB exhibits superior Na storage performance with a first discharge capacity of 145.2 mAh g^(−1) at 100 mA g^(−1).Long cycling tests exhibit minimal capacity decay of 0.027%per cycle over 1000 cycles at 1 A g^(−1).Therefore,this PTCA coating strategy has shown promising competence in enhancing the electrochemical performance of Fe-PB,which can potentially serve as a universal electrode coating strategy for Na-ion batteries.展开更多
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat...Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.展开更多
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv...The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved.展开更多
Silicon monoxide(SiO) has been considered as one of the most promising anode materials for next generation highenergy-density Li-ion batteries(LiBs) thanks to its high theoretical capacity. However, the poor intrinsic...Silicon monoxide(SiO) has been considered as one of the most promising anode materials for next generation highenergy-density Li-ion batteries(LiBs) thanks to its high theoretical capacity. However, the poor intrinsic electronic conductivity and large volume change during lithium intercalation/de-intercalation restrict its practical applications. Fabrication of SiO/C composites is an effective way to overcome these problems. Herein, a series of micro-sized SiO@C/graphite(Si0@C/G) composite anode materials, with designed capacity of 600 mAh·g-1, are successfully prepared through a pitch pyrolysis reaction method. The electrochemical performance of SiO@C/G composite anodes with different carbon coating contents of 5 wt%, 10 wt%, 15 wt%, and 35 wt% is investigated. The results show that the SiO@C/G composite with15-wt% carbon coating content exhibits the best cycle performance, with a high capacity retention of 90.7% at 25℃ and90.1% at 45 0 C after 100 cycles in full cells with LiNi0.5Co0.2Mn0.3O2 as cathodes. The scanning electron microscope(SEM) and electrochemistry impedance spectroscopy(EIS) results suggest that a moderate carbon coating layer can promote the formation of stable SEI film, which is favorable for maintaining good interfacial conductivity and thus enhancing the cycling stability of SiO electrode.展开更多
An optimal test method for paint is proposed; additionally, the Field and Laboratory Emission Cell (FLEC) method used in Europe is applied as a substitute for the 20 L small chamber method. The emission factors of t...An optimal test method for paint is proposed; additionally, the Field and Laboratory Emission Cell (FLEC) method used in Europe is applied as a substitute for the 20 L small chamber method. The emission factors of total volatile organic compounds (TVOC) and formaldehyde from oil-based paint, emulsion paint, and water-dispersion paint with a coating weight of 300 g/m2, cured for 24/48 hours, were measured using the 20 L small chamber method. The emission rate of TVOC and formaldehyde from all paints began to stabilize after approximately 7 days after 24/48 hours of curing even though Korean standards stipulate that paint should be measured and analyzed after the third day of application. The emission factor of TVOC and formaldehyde from oil-based, emulsion, and water-dispersion paints were also measured using the FLEC method. There was good correlation between the 20 L small chamber method and the FLEC method for oil-based, emulsion, and water-dispersion paint emissions. With the FLEC method, using paints prepared under identical conditions, the emission rate was stable 24 hours after installation of samples because the air flow rate of FLEC is much higher than that of a 20 L small chamber, and the relative cell volume of FLEC is much smaller than that of a 20 L small chamber.展开更多
Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,c...Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed.展开更多
Steel applied in ocean environment is exposed to corrosion and cavitation and is subject to increasing damages. To prevent this, anti-corrosion thermal spray coating technique is widely used. The low-temperature therm...Steel applied in ocean environment is exposed to corrosion and cavitation and is subject to increasing damages. To prevent this, anti-corrosion thermal spray coating technique is widely used. The low-temperature thermal spray coating was performed with 85%Al-14.5%Zn-0.5%Zr for ship materials and various sealing materials were applied to improve its durability, and the electrochemical behavior and cavitation characteristics were observed. The results show that the sealing improves all the properties of the materials. Hybrid ceramic and fluoro-silicon sealing materials show good electrochemical characteristics, and the fluoro-silieon sealing material shows the best anti-cavitation characteristics.展开更多
Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during...Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.展开更多
The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composit...The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The (bio-)(mimetic) apatite coating is made up of larger number of globules with size of 15μm. Each globule is a group of (numerous) flakes with a size range of 100200nm to 30μm in length and 0.11μm in thickness. In-vitro and (in-vivo) studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much (promising.)展开更多
An evident improvement on activation properties of hydrogen storage was made by sput- tering an amorphous coating of commercial Si on TiFe alloy.SEM observation revealed an obvious difference between the morphologies ...An evident improvement on activation properties of hydrogen storage was made by sput- tering an amorphous coating of commercial Si on TiFe alloy.SEM observation revealed an obvious difference between the morphologies before and after hydrogen storage for TiFe alloy with or without amorphous Si coating.It is believed that this may be quite a developable hydrogen storage material.展开更多
This research aims to contribute to the safe methodology for additive manufacturing(AM)of energetic materials.Coating formulation processes were investigated and evaluated to find a suitable method that may enable sel...This research aims to contribute to the safe methodology for additive manufacturing(AM)of energetic materials.Coating formulation processes were investigated and evaluated to find a suitable method that may enable selective laser sintering(SLS)as the safe method for fabrication of high explosive(HE)compositions.For safety and co nvenie nce reasons,the co ncept demonstration was conducted using inert explosive simulants with properties quasi-similar to the real HE.Coating processes for simulant RDXbased microparticles by means of PCL and 3,4,5-trimethoxybenzaldehyde(as TNT simulant)are reported.These processes were evaluated for uniformity of coating the HE inert simulant particles with binder materials to facilitate the SLS as the adequate binding and fabrication method.Suspension system and single emulsion methods gave required particle near spherical morphology,size and uniform coating.The suspension process appears to be suitable for the SLS of HE mocks and potential formulation methods for active HE composites.The density is estimated to be comparable with the current HE compositions and plastic bonded explosives(PBXs)such as C4 and PE4,produced from traditional methods.The formulation method developed and understanding of the science behind the processes paves the way toward safe SLS of the active HE compositions and may open avenues for further research and development of munitions of the future.展开更多
Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there...Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there is a need to develop a controllable and scalable deposition technique that can be carried out under ambient conditions. Even though the doctor-blade coating technique has been widely used to prepare PSCs, it is yet to be applied to high-efficiency PSCs under ambient conditions(RH ~45%, RT ~25 °C). In this study, we conducted blade-coating fabrication of modified high-efficiency PSCs under such conditions. We controlled the substrate temperature to ensure phase transition of perovskite and added dimethyl sulfoxide(DMSO) to the perovskite precursor solution to delay crystallization, which can facilitate the formation of uniform perovskite films by doctor-blade coating. The as-prepared perovskite films had large crystal domains measuring up to 100 μm. Solar cells prepared from these films exhibited a current density that was enhanced from 17.22 to 19.98 m A/cm^2 and an efficiency that was increased from 10.98% to 13.83%. However, the open-circuit voltage was only 0.908 V, probably due to issues with the hole-transporting layer. Subsequently, we replaced poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) with Ni O x as the hole-transporting material and then prepared higher-quality perovskite films by blade-coating under ambient conditions. The as-prepared perovskite films were preferably orientated and had large crystal domains measuring up to 200 μm;The open-circuit voltage of the resulting PSCs was enhanced from 0.908 to 1.123 V, while the efficiency increased from 13.83% to 15.34%.展开更多
A slurry dip-coating technique was developed for fabrication of Zr02/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by...A slurry dip-coating technique was developed for fabrication of Zr02/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by viscositytest. The amount of polyvinyl butyral (PVB) additives, which served as the dispersant and binder in ZrO2-Ni-ethanolslurry, was optimized. The results showed that the characters of mixed slurries with added 9 vol. pct (relativelyto total powders) MoSi2 powders prepared by mechanical alloying changed little. The stainless steel substrate wascoated several times by dipping in the slurries, and followed by drying in air every dipping. After debinding in Arin graphite die, the coated FGM plate was finally hot pressed at 1300℃ for 1 h under the pressure of 5 MPa in Arin the same die. Microstructural observations of the sintered FGM specimens revealed that the graded layers wereformed on the stainless steel substrate, in which no cracks were observed.展开更多
The road surface of cement concrete in highway is easily cracked and even destroyed due to inhomogeneous subsiding of the road foundation. In this work, a super-thin-coating material is prepared in order to repair the...The road surface of cement concrete in highway is easily cracked and even destroyed due to inhomogeneous subsiding of the road foundation. In this work, a super-thin-coating material is prepared in order to repair the destroyed thin road surface, in which polymers and steel-fiber are added into ordinary concrete to form a steel fiber reinforced polymer-cement-based composite, the composite was successfully used to repair road surface. Microstructure and mechanical properties of the composites are measured and analyzed.展开更多
基金This work is financially supported by a University-Level Doctoral Research Start-Up Fund in 2019.
文摘A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.
基金Project (2012M511752) supported by China Postdoctoral Science FoundationProject (2011CB605801) supported by the National Basical Research Program of China+3 种基金Project (2012QNZT004) supported by the Fundamental Research Funds of the Central Universities, ChinaProject supported by the Freedom Explore Program of Central South University, ChinaProject (CSUZC2012026) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.
基金supported in part by the High Performance Computing Center of Central South Universitythe financial support from the Government of Chongzuo,Guangxi Zhuang Autonomous Region(Fund No.FA2020011FA20210713)
文摘LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material.
基金supported by the China National Funds for Distinguished Young Scientists(21925503)the National Natural Science Foundation of China(21835004)the Jilin Scientific and Technological Development Program(20220301018GX)。
文摘Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study,we propose a molten salt-assisted synthesis in combination with a Li-refeeding induced aluminum segregation strategy to prepare Li_(5)AlO_(4)-coated single-crystalline slightly Li-rich Li_(1.04)Ni_(0.92)Al_(0.04)O_(2).The symbiotic formation of Li_(5)AlO_(4)from reaction between molten lithium hydroxide and doped aluminum in the bulk ensures a high lattice matching between the Ni-rich oxide and the homogenous conductive Li_(5)AlO_(4)that permits high Li^(+)conductivity.Benefiting from mitigated undesirable side reactions and phase evolution,the Li_(5)AlO_(4)-coated single-crystalline Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)delivers a high specific capacity of220.2 mA h g^(-1)at 0.1 C and considerable rate capability(182.5 mA h g^(-1)at 10 C).Besides,superior capacity retention of 90.8%is obtained at 1/3 C after 100 cycles in a 498.1 mA h pouch full cell.Furthermore,the particulate morphology of Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)remains intact after cycling at a cutoff voltage of 4.3 V,whereas slightly Li-deficient Li_(0.98)Ni_(0.97)Al_(0.05)O_(2)features intragranular cracks and irreversible lattice distortion.The results highlight the value of molten salt-assisted synthesis and Li-refeeding induced elemental segregation strategy to upgrade Ni-based layered oxide cathode materials for advanced Li-ion batteries.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21805139,12102194 and 22005144)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.30921011203)the Young Elite Scientists Sponsorship Program by CAST(YESS Program,2021QNRC001)。
文摘Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidizer ammonium perchlorate(AP)in solid propellants,but also a good performance explosive in itself.However,due to the strong hygroscopicity of ADN,its application in solid propellants and explosives is greatly limited.Solving the hygroscopicity of ADN is the key to realize the wide application of ADN.In this paper,we systematically review the research progress of anti-hygroscopic strategies of ADN coating.The surface coating methods are focusing on solvent volatilization,solvent-non-solvent,melt crystallization and atomic layer deposition technology.The characteristics of the different methods are compared and analyzed,and the basis for the classification and selection of the coating materials are introduced in detail.In addition,the feasibility of material for surface coating of ADN is evaluated by several compatibility analysis methods.It is highly expected that the liquid phase method(solvent volatilization method,solvent-non-solvent method)would be the promising method for future ADN coating because of its effective,safety and facile operation.Furthermore,polymer materials,are the preferred coating materials due to their high viscosity,easy adhesion,good anti-hygroscopic effect,and heat resistance,which make ADN weak hygroscopicity,less sensitive,easier to preserve and good compatibility.
基金National Key Research and Development Program of China,Grant/Award Number:2022YFB3807700Hubei Natural Science Foundation Innovation Group Project,Grant/Award Number:2022CFA020+2 种基金Joint Funds of the Hubei Natural Science Foundation Innovation and Development,Grant/Award Number:2022CFD034Major Technological Innovation Project of Hubei Science and Technology Department,Grant/Award Number:2019AAA164National Natural Science Foundation of China,Grant/Award Number:2022CFD034。
文摘Fe-based Prussian blue(Fe-PB)cathode material shows great application potential in sodium(Na)-ion batteries due to its high theoretical capacity,long cycle life,low cost,and simple preparation process.However,the crystalline water and vacancies of Fe-PB lattice,the low electrical conductivity,and the dissolution of metal ions lead to limited capacity and poor cycling stability.In this work,a perylene tetracarboxylic dianhydride amine(PTCDA)coating layer is successfully fabricated on the surface of Fe-PB by a liquid-phase method.The aminated PTCDA(PTCA)coating not only increases the specific surface area and electronic conductivity but also effectively reduces the crystalline water and vacancies,which avoids the erosion of Fe-PB by electrolyte.Consequently,the PTCA layer reduces the charge transfer resistance,enhances the Na-ion diffusion coefficient,and improves the structure stability.The PTCA-coated Fe-PB exhibits superior Na storage performance with a first discharge capacity of 145.2 mAh g^(−1) at 100 mA g^(−1).Long cycling tests exhibit minimal capacity decay of 0.027%per cycle over 1000 cycles at 1 A g^(−1).Therefore,this PTCA coating strategy has shown promising competence in enhancing the electrochemical performance of Fe-PB,which can potentially serve as a universal electrode coating strategy for Na-ion batteries.
基金the Fundamental Research Funds for the Central Universities,China(No.06500177)the National Natural Science Foundation of China Joint Fund Project(No.U1764255)。
文摘Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.
基金Funded by the Key Research Projects in Gansu Province(No.17YF1GA020)。
文摘The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved.
基金Project supported by the State Grid Technology Project,China(study on the mechanism and characterization of lithium dendrite growth in lithium ion batteries,Project No.DG71-17-010)the National Key Research and Development Program of China(Grant No.2017YFB0102004)the National Natural Science Foundation of China(Grant No.51822211)
文摘Silicon monoxide(SiO) has been considered as one of the most promising anode materials for next generation highenergy-density Li-ion batteries(LiBs) thanks to its high theoretical capacity. However, the poor intrinsic electronic conductivity and large volume change during lithium intercalation/de-intercalation restrict its practical applications. Fabrication of SiO/C composites is an effective way to overcome these problems. Herein, a series of micro-sized SiO@C/graphite(Si0@C/G) composite anode materials, with designed capacity of 600 mAh·g-1, are successfully prepared through a pitch pyrolysis reaction method. The electrochemical performance of SiO@C/G composite anodes with different carbon coating contents of 5 wt%, 10 wt%, 15 wt%, and 35 wt% is investigated. The results show that the SiO@C/G composite with15-wt% carbon coating content exhibits the best cycle performance, with a high capacity retention of 90.7% at 25℃ and90.1% at 45 0 C after 100 cycles in full cells with LiNi0.5Co0.2Mn0.3O2 as cathodes. The scanning electron microscope(SEM) and electrochemistry impedance spectroscopy(EIS) results suggest that a moderate carbon coating layer can promote the formation of stable SEI film, which is favorable for maintaining good interfacial conductivity and thus enhancing the cycling stability of SiO electrode.
基金Supported by the National Research Foundation of Korea (NRF) by the Korea Government (MEST) (No. 2011-0001031)
文摘An optimal test method for paint is proposed; additionally, the Field and Laboratory Emission Cell (FLEC) method used in Europe is applied as a substitute for the 20 L small chamber method. The emission factors of total volatile organic compounds (TVOC) and formaldehyde from oil-based paint, emulsion paint, and water-dispersion paint with a coating weight of 300 g/m2, cured for 24/48 hours, were measured using the 20 L small chamber method. The emission rate of TVOC and formaldehyde from all paints began to stabilize after approximately 7 days after 24/48 hours of curing even though Korean standards stipulate that paint should be measured and analyzed after the third day of application. The emission factor of TVOC and formaldehyde from oil-based, emulsion, and water-dispersion paints were also measured using the FLEC method. There was good correlation between the 20 L small chamber method and the FLEC method for oil-based, emulsion, and water-dispersion paint emissions. With the FLEC method, using paints prepared under identical conditions, the emission rate was stable 24 hours after installation of samples because the air flow rate of FLEC is much higher than that of a 20 L small chamber, and the relative cell volume of FLEC is much smaller than that of a 20 L small chamber.
基金financially supported by the project of International Science&Technology Cooperation of China(No.2019YFE0100200)。
文摘Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed.
基金Project supported by the Ministry of Education,Science Technology(MEST) and Korea Industrial Technology Foundation(KOTEF) through the Human Resource Training Project for Regional Innovation
文摘Steel applied in ocean environment is exposed to corrosion and cavitation and is subject to increasing damages. To prevent this, anti-corrosion thermal spray coating technique is widely used. The low-temperature thermal spray coating was performed with 85%Al-14.5%Zn-0.5%Zr for ship materials and various sealing materials were applied to improve its durability, and the electrochemical behavior and cavitation characteristics were observed. The results show that the sealing improves all the properties of the materials. Hybrid ceramic and fluoro-silicon sealing materials show good electrochemical characteristics, and the fluoro-silieon sealing material shows the best anti-cavitation characteristics.
基金financially supported by the National Excellent Young Scientists Fund(NO.51525503)
文摘Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.
文摘The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The (bio-)(mimetic) apatite coating is made up of larger number of globules with size of 15μm. Each globule is a group of (numerous) flakes with a size range of 100200nm to 30μm in length and 0.11μm in thickness. In-vitro and (in-vivo) studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much (promising.)
文摘An evident improvement on activation properties of hydrogen storage was made by sput- tering an amorphous coating of commercial Si on TiFe alloy.SEM observation revealed an obvious difference between the morphologies before and after hydrogen storage for TiFe alloy with or without amorphous Si coating.It is believed that this may be quite a developable hydrogen storage material.
基金funded by the Council for Scientific and Industrial Research(CSIR)。
文摘This research aims to contribute to the safe methodology for additive manufacturing(AM)of energetic materials.Coating formulation processes were investigated and evaluated to find a suitable method that may enable selective laser sintering(SLS)as the safe method for fabrication of high explosive(HE)compositions.For safety and co nvenie nce reasons,the co ncept demonstration was conducted using inert explosive simulants with properties quasi-similar to the real HE.Coating processes for simulant RDXbased microparticles by means of PCL and 3,4,5-trimethoxybenzaldehyde(as TNT simulant)are reported.These processes were evaluated for uniformity of coating the HE inert simulant particles with binder materials to facilitate the SLS as the adequate binding and fabrication method.Suspension system and single emulsion methods gave required particle near spherical morphology,size and uniform coating.The suspension process appears to be suitable for the SLS of HE mocks and potential formulation methods for active HE composites.The density is estimated to be comparable with the current HE compositions and plastic bonded explosives(PBXs)such as C4 and PE4,produced from traditional methods.The formulation method developed and understanding of the science behind the processes paves the way toward safe SLS of the active HE compositions and may open avenues for further research and development of munitions of the future.
基金supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China (Grants Nos. 2016YFA0202400 and 2016YFA0202404)the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee (Grant No. KQTD2015033110182370)+1 种基金the Fundamental Research (Discipline Arrangement) Project funding from Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20170412154554048)the National Natural Science Foundation of China (Grant No. 51473139)
文摘Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there is a need to develop a controllable and scalable deposition technique that can be carried out under ambient conditions. Even though the doctor-blade coating technique has been widely used to prepare PSCs, it is yet to be applied to high-efficiency PSCs under ambient conditions(RH ~45%, RT ~25 °C). In this study, we conducted blade-coating fabrication of modified high-efficiency PSCs under such conditions. We controlled the substrate temperature to ensure phase transition of perovskite and added dimethyl sulfoxide(DMSO) to the perovskite precursor solution to delay crystallization, which can facilitate the formation of uniform perovskite films by doctor-blade coating. The as-prepared perovskite films had large crystal domains measuring up to 100 μm. Solar cells prepared from these films exhibited a current density that was enhanced from 17.22 to 19.98 m A/cm^2 and an efficiency that was increased from 10.98% to 13.83%. However, the open-circuit voltage was only 0.908 V, probably due to issues with the hole-transporting layer. Subsequently, we replaced poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) with Ni O x as the hole-transporting material and then prepared higher-quality perovskite films by blade-coating under ambient conditions. The as-prepared perovskite films were preferably orientated and had large crystal domains measuring up to 200 μm;The open-circuit voltage of the resulting PSCs was enhanced from 0.908 to 1.123 V, while the efficiency increased from 13.83% to 15.34%.
文摘A slurry dip-coating technique was developed for fabrication of Zr02/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by viscositytest. The amount of polyvinyl butyral (PVB) additives, which served as the dispersant and binder in ZrO2-Ni-ethanolslurry, was optimized. The results showed that the characters of mixed slurries with added 9 vol. pct (relativelyto total powders) MoSi2 powders prepared by mechanical alloying changed little. The stainless steel substrate wascoated several times by dipping in the slurries, and followed by drying in air every dipping. After debinding in Arin graphite die, the coated FGM plate was finally hot pressed at 1300℃ for 1 h under the pressure of 5 MPa in Arin the same die. Microstructural observations of the sintered FGM specimens revealed that the graded layers wereformed on the stainless steel substrate, in which no cracks were observed.
文摘The road surface of cement concrete in highway is easily cracked and even destroyed due to inhomogeneous subsiding of the road foundation. In this work, a super-thin-coating material is prepared in order to repair the destroyed thin road surface, in which polymers and steel-fiber are added into ordinary concrete to form a steel fiber reinforced polymer-cement-based composite, the composite was successfully used to repair road surface. Microstructure and mechanical properties of the composites are measured and analyzed.