The resin-matrix pantograph contact strip (RMPCS),which has excellent abrasion resistance with electrical current and friction-reducing function,was developed in view of the traditional contact strips with high mainte...The resin-matrix pantograph contact strip (RMPCS),which has excellent abrasion resistance with electrical current and friction-reducing function,was developed in view of the traditional contact strips with high maintenance cost,high wear rate with electrical current and severe damage to the copper conducting wire.The characteristics of worn surfaces,cross-section and typical elemental distributions of RMPCS were studied by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS).The wear behavior and arc discharge of RMPCS against copper were investigated with self-made electrical wear tester.The results show that the electrical current plays a critical role in determining the wear behavior,and the wear rate of the RMPCS against copper with electrical current is 2.7-5.8 times higher than the value without electrical current.The wear rate of the contact strip increases with the increase of the sliding speed and electrical current density.The main wear mechanism of RMPCS against copper without electrical current is low stress grain abrasive and slightly adhesive wear,while arc erosion wear and oxidation wear are the dominate mechanism with electrical current,which is accompanied by adhesive wear during the process of wear.展开更多
The tribological behaviors of carbon block sliding against copper ring with and without electric current applied were investigated by using an advanced multifunctional friction and wear tester, and the electric-arc be...The tribological behaviors of carbon block sliding against copper ring with and without electric current applied were investigated by using an advanced multifunctional friction and wear tester, and the electric-arc behaviors were analyzed in detail. The results show that the normal load is one of the main controlling factors for generation of electric arc during friction process with electric current applied. The strength of electric arc is enhanced with the decrease of normal loads and the increase of electric currents. The unstable friction process and the fluctuated dynamic friction coefficients are strongly dependent upon the electric arc. The wear volumes and the wear mechanism of carbon brush were affected by the electric arc obviously. As no electric arc occurs, no clear discrepancy of the wear volumes of the carbon samples with and without electric current applied could be detected. While the wear mechanisms are mainly mechanical wear. However, under the condition of the electric arc appearance, the wear volume of carbon with electric current applied increases much more rapidly than that without electric current applied and also increases obviously with the increase of electric current strengths and the decrease of normal loads. The wear mechanisms of carbon block are mainly electric arc ablation accompanying with adhesive wear and material transferring.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction a...Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.展开更多
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments ...As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.展开更多
CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by usi...CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.展开更多
CNTs-Ag-G electrical contact composite material was prepared by means of powder metallurgical method. The influence of the graphite content on sliding wear characteristics of electrical contact levels was examined. In...CNTs-Ag-G electrical contact composite material was prepared by means of powder metallurgical method. The influence of the graphite content on sliding wear characteristics of electrical contact levels was examined. In experiments, CNTs content was retained as 1% (mass fraction), and graphite was added at content levels of 8%, 10%, 13%, 15% and 18%, respectively. The results indicate that with the increase of graphite content, the contact resistance of electrical contacts is enhanced to a certain level then remains constant. Friction coefficient decreases gradually with the increase of graphite content. Wear mass loss decreases to the minimum value then increases. With the small content of graphite, the adhesive wear is hindered, which leads to the decrease of wear mass loss, while excessive graphite brings much more worn debris, resulting in the increase of mass loss. It is concluded that wear mass loss reaches the minimum value when the graphite mass fraction is about 13%. Compared with conventional Ag-G contact material, the wear mass loss of CNTs-Ag-G composite is much less due to the obvious increase of hardness and electrical conductivity, decline of friction surface temperature and inhibition of adhesive wear between composites and slip rings.展开更多
Many current-carrying contact pairs, such as those found in pantograph-catenary systems, operate in open environments and are susceptible to significant external interference from temperature and humidity variations. ...Many current-carrying contact pairs, such as those found in pantograph-catenary systems, operate in open environments and are susceptible to significant external interference from temperature and humidity variations. This study investigated the evolution of the friction coefficient and contact resistance of C/Cu contact pairs under alternating temperature, humidity, and current conditions. Through experimentation, the wear rate and microtopography of the worn surface were analyzed under various constant parameters. Subsequently, the differences in tribological behavior and current-carrying characteristics of the contact pairs under these three parameters were explored. The results revealed that the decrease in temperature resulted in a significant increase in the friction coefficient of the contact pairs, carbon wear, and copper surface roughness. Additionally, the surface oxidation rate was lower at lower temperatures. Moreover, contact resistance did not consistently increase with decreasing temperature, owing to the combined action of the contact area and the oxide film. Compared with temperature, humidity fluctuations at room temperature exerted less influence on the friction coefficient and contact resistance of the contact pairs. Dry environments rendered carbon materials vulnerable to oxidation and cracking, while excessive humidity fostered abrasive wear and arcing. High-current conditions generally degraded the tribological properties of C/Cu contacts. In the absence of current, the friction coefficient was extremely high, and the copper transfer was high. Under excessive current, copper was susceptible to plowing by carbon micro-bumps and abrasive particles, resulting in a decrease in the friction coefficient. The release of lipids from the carbon surface due to temperature elevation weakened the electrical contact performance and increased the occurrence of arc erosion, thereby exacerbating carbon wear.展开更多
基金Project (06FJ3041) supported by the Key Laboratory Open Foundation of Hunan Province, China
文摘The resin-matrix pantograph contact strip (RMPCS),which has excellent abrasion resistance with electrical current and friction-reducing function,was developed in view of the traditional contact strips with high maintenance cost,high wear rate with electrical current and severe damage to the copper conducting wire.The characteristics of worn surfaces,cross-section and typical elemental distributions of RMPCS were studied by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS).The wear behavior and arc discharge of RMPCS against copper were investigated with self-made electrical wear tester.The results show that the electrical current plays a critical role in determining the wear behavior,and the wear rate of the RMPCS against copper with electrical current is 2.7-5.8 times higher than the value without electrical current.The wear rate of the contact strip increases with the increase of the sliding speed and electrical current density.The main wear mechanism of RMPCS against copper without electrical current is low stress grain abrasive and slightly adhesive wear,while arc erosion wear and oxidation wear are the dominate mechanism with electrical current,which is accompanied by adhesive wear during the process of wear.
基金Project (2007CB714703) supported by the National Basic Research Program of ChinaProject (50521503) supported by the National Natural Science Foundation of ChinaProject (20050613015) supported by Research Fund for Doctoral Program of Higher Education of China
文摘The tribological behaviors of carbon block sliding against copper ring with and without electric current applied were investigated by using an advanced multifunctional friction and wear tester, and the electric-arc behaviors were analyzed in detail. The results show that the normal load is one of the main controlling factors for generation of electric arc during friction process with electric current applied. The strength of electric arc is enhanced with the decrease of normal loads and the increase of electric currents. The unstable friction process and the fluctuated dynamic friction coefficients are strongly dependent upon the electric arc. The wear volumes and the wear mechanism of carbon brush were affected by the electric arc obviously. As no electric arc occurs, no clear discrepancy of the wear volumes of the carbon samples with and without electric current applied could be detected. While the wear mechanisms are mainly mechanical wear. However, under the condition of the electric arc appearance, the wear volume of carbon with electric current applied increases much more rapidly than that without electric current applied and also increases obviously with the increase of electric current strengths and the decrease of normal loads. The wear mechanisms of carbon block are mainly electric arc ablation accompanying with adhesive wear and material transferring.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金Project(51075075)supported by the National Natural Science Foundation of China
文摘Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.
基金supported by Major Research Program of National Natural Science Foundation of China(Grant No. 91026018)National Natural Science Foundation of China(Grant No. 60979017)Doctoral Fund of Ministry of Education of China(Grant No. 20110111110015)
文摘As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.
基金Project (2007CB607603) supported by the National Basic Research Program of China
文摘CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.
基金Project(50271021) supported by the National Natural Science Foundation of ChinaProject(ZD2008003) supported by Key Science Foundation of the Education Department of Anhui Province, China+2 种基金Project(CF07-10) supported by the Innovation Center for Postgraduates at HFNL (USTC), ChinaProject(KF0702) supported by the Open Project Program of Ministry of Education of ChinaProject supported by Nippon Sheet Glass Foundation of Japan for Materials Science and Engineering
文摘CNTs-Ag-G electrical contact composite material was prepared by means of powder metallurgical method. The influence of the graphite content on sliding wear characteristics of electrical contact levels was examined. In experiments, CNTs content was retained as 1% (mass fraction), and graphite was added at content levels of 8%, 10%, 13%, 15% and 18%, respectively. The results indicate that with the increase of graphite content, the contact resistance of electrical contacts is enhanced to a certain level then remains constant. Friction coefficient decreases gradually with the increase of graphite content. Wear mass loss decreases to the minimum value then increases. With the small content of graphite, the adhesive wear is hindered, which leads to the decrease of wear mass loss, while excessive graphite brings much more worn debris, resulting in the increase of mass loss. It is concluded that wear mass loss reaches the minimum value when the graphite mass fraction is about 13%. Compared with conventional Ag-G contact material, the wear mass loss of CNTs-Ag-G composite is much less due to the obvious increase of hardness and electrical conductivity, decline of friction surface temperature and inhibition of adhesive wear between composites and slip rings.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52365022, 52375181)the Natural Science Foundation of Jiangxi Province (Grant No. 20224ACB204012)+1 种基金the Postgraduate Innovation Special Fund Project in Jiangxi Province (Grant No. YC2022-B177)the General Subject of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure (Grant No.HJGZ2023208)。
文摘Many current-carrying contact pairs, such as those found in pantograph-catenary systems, operate in open environments and are susceptible to significant external interference from temperature and humidity variations. This study investigated the evolution of the friction coefficient and contact resistance of C/Cu contact pairs under alternating temperature, humidity, and current conditions. Through experimentation, the wear rate and microtopography of the worn surface were analyzed under various constant parameters. Subsequently, the differences in tribological behavior and current-carrying characteristics of the contact pairs under these three parameters were explored. The results revealed that the decrease in temperature resulted in a significant increase in the friction coefficient of the contact pairs, carbon wear, and copper surface roughness. Additionally, the surface oxidation rate was lower at lower temperatures. Moreover, contact resistance did not consistently increase with decreasing temperature, owing to the combined action of the contact area and the oxide film. Compared with temperature, humidity fluctuations at room temperature exerted less influence on the friction coefficient and contact resistance of the contact pairs. Dry environments rendered carbon materials vulnerable to oxidation and cracking, while excessive humidity fostered abrasive wear and arcing. High-current conditions generally degraded the tribological properties of C/Cu contacts. In the absence of current, the friction coefficient was extremely high, and the copper transfer was high. Under excessive current, copper was susceptible to plowing by carbon micro-bumps and abrasive particles, resulting in a decrease in the friction coefficient. The release of lipids from the carbon surface due to temperature elevation weakened the electrical contact performance and increased the occurrence of arc erosion, thereby exacerbating carbon wear.