Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of...Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.展开更多
The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much bette...The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much better mechanical and tribological properties compared with the unimpregnated graphite. The friction coefficient was reduced by addition of furan resin, which could also prevent the'dusting' wear at loads more than 15 MPa. The steady and lubricated transfer film was easily formed on the counterpart surface due to the interaction of furan resin and wear debris of graphite, which was useful to reduce the wear rate of the resin/graphite composite. The composite is highly promising for mechanical sealing application and can be used at high load for long time sliding.展开更多
Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. Thes...Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. These composites with different La2O3 and graphite contents were fabricated by hot-pressing. Physical and mechanical properties of the composites were examined. Morphologies of the worn surface of composites were observed using optical microscopy. X-ray photoelectron spectroscopy spectra were used to study compositions of the lubricating film. The results showed that with the increasing addition of La2O3, hardness, flexural strength and electrical resistivity increased, but the relative density dropped. The friction coefficient increased with the increasing addition of La2O3. Composite containing 3 vol.% of La2O3 and 37 vol.% of graphite showed the best wear resistance. The main wear mechanisms of composites were abrasive wear, oxidative wear and adhesive wear.展开更多
This study deals with the development of drum brake liner for a multi-utility vehicle possessing a hydraulic brake system by varying 7 weight%of steel fiber and stainless steel fiber each,in friction composite formula...This study deals with the development of drum brake liner for a multi-utility vehicle possessing a hydraulic brake system by varying 7 weight%of steel fiber and stainless steel fiber each,in friction composite formulations.The developed friction composites were tested for physical,chemical,corrosion,mechanical,thermal properties,and tribological characteristics,under near-actual conditions using an inertia dynamometer as per industrial standards.Finite element analysis software(ANSYS)analysis was performed to show the thermal stress distribution of the developed friction composites at the maximum temperature rise due to heat generated during brake stops,and an extensive evaluation method was used to rank the composites.The study concludes that the brake factor of the stainless steel fiber-based friction composite produces stable performance in all conditions with a lower liner temperature rise of 340°C and lower thermal stress at 4.255294 MPa.However,the steel fiber-based composites produced high performance at the beginning but deteriorated after a certain period due to higher levels of corrosion and a high temperature rise of 361°C resulting in a negative fade(-0.84%)and more thermal stress(5.619102 MPa).The primary plateau,secondary plateau,back transfer of drum wear debris,and the distribution of constituents on the worn surface of the developed composites in a resin matrix were identified and studied using a scanning electron microscope(SEM)equipped with energy-dispersive spectroscopy.展开更多
In this study,we evaluated the wear properties of four brands of brake pad available in the Nigerian market.In particular,we assessed the tribo performance and service life of the brake pads.We purchased four commerci...In this study,we evaluated the wear properties of four brands of brake pad available in the Nigerian market.In particular,we assessed the tribo performance and service life of the brake pads.We purchased four commercial brands of brake pads used in light duty cars and coded them as AU,SN,TY and SM,respectively.A small piece of the brake pad lining materials was carefully chiseled from the back plates to obtain samples for the experiments.We conducted Brinell hardness tests using a tensometer and a pin-on-disc test rig to determine the coefficient of friction and the wear characteristics of the materials.We then correlated the wear on each set of brake pads with the running time and used Weibull’s equation to determine average service life.Sample TY exhibited the highest hardness value(29.09)and sample SN the lowest(10.05).The determined coefficients of friction ranged between 0.3-0.36,with sample AU exhibiting the lowest value and sample SM the highest.Sample SN showed the lowest wear rate of 3.53×10^(9) g/min,while the wear rates of samples TY,AU,and SM were 5.64×10^(8),8.19×10^(9),and 2.10×10^(8) g/min,respectively.The relative service life of samples SN,TY,and AU were similar,with average values of 2778.09,2725.41,and 2717.34 min,respectively,and SM had a relatively low service life(2017.82 min).We conclude that the overall performances of Nigerian brake pads do not meet all the specifications for friction materials used in road vehicle brake linings and pads.展开更多
基金Funded by the National Young Top Talents Plan of China(2013042)the National Science Foundation of China(21676052,21606042)+1 种基金the Science Foundation for Distinguished Young Scholars of Heilongjiang Province(JC201403)the Natural Science Foundation of Heilongjiang Province(E2015034)
文摘Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.
文摘The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much better mechanical and tribological properties compared with the unimpregnated graphite. The friction coefficient was reduced by addition of furan resin, which could also prevent the'dusting' wear at loads more than 15 MPa. The steady and lubricated transfer film was easily formed on the counterpart surface due to the interaction of furan resin and wear debris of graphite, which was useful to reduce the wear rate of the resin/graphite composite. The composite is highly promising for mechanical sealing application and can be used at high load for long time sliding.
基金Project supported by the Major Research Program of the National Natural Science Foundation of China(91026018)the Doctoral Fund of Ministry of Education of China(2011011110015)the Shanghai City special artificial micro materials and Technology Key Laboratory Open Fund(ammt2013A-7)
文摘Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. These composites with different La2O3 and graphite contents were fabricated by hot-pressing. Physical and mechanical properties of the composites were examined. Morphologies of the worn surface of composites were observed using optical microscopy. X-ray photoelectron spectroscopy spectra were used to study compositions of the lubricating film. The results showed that with the increasing addition of La2O3, hardness, flexural strength and electrical resistivity increased, but the relative density dropped. The friction coefficient increased with the increasing addition of La2O3. Composite containing 3 vol.% of La2O3 and 37 vol.% of graphite showed the best wear resistance. The main wear mechanisms of composites were abrasive wear, oxidative wear and adhesive wear.
文摘This study deals with the development of drum brake liner for a multi-utility vehicle possessing a hydraulic brake system by varying 7 weight%of steel fiber and stainless steel fiber each,in friction composite formulations.The developed friction composites were tested for physical,chemical,corrosion,mechanical,thermal properties,and tribological characteristics,under near-actual conditions using an inertia dynamometer as per industrial standards.Finite element analysis software(ANSYS)analysis was performed to show the thermal stress distribution of the developed friction composites at the maximum temperature rise due to heat generated during brake stops,and an extensive evaluation method was used to rank the composites.The study concludes that the brake factor of the stainless steel fiber-based friction composite produces stable performance in all conditions with a lower liner temperature rise of 340°C and lower thermal stress at 4.255294 MPa.However,the steel fiber-based composites produced high performance at the beginning but deteriorated after a certain period due to higher levels of corrosion and a high temperature rise of 361°C resulting in a negative fade(-0.84%)and more thermal stress(5.619102 MPa).The primary plateau,secondary plateau,back transfer of drum wear debris,and the distribution of constituents on the worn surface of the developed composites in a resin matrix were identified and studied using a scanning electron microscope(SEM)equipped with energy-dispersive spectroscopy.
文摘In this study,we evaluated the wear properties of four brands of brake pad available in the Nigerian market.In particular,we assessed the tribo performance and service life of the brake pads.We purchased four commercial brands of brake pads used in light duty cars and coded them as AU,SN,TY and SM,respectively.A small piece of the brake pad lining materials was carefully chiseled from the back plates to obtain samples for the experiments.We conducted Brinell hardness tests using a tensometer and a pin-on-disc test rig to determine the coefficient of friction and the wear characteristics of the materials.We then correlated the wear on each set of brake pads with the running time and used Weibull’s equation to determine average service life.Sample TY exhibited the highest hardness value(29.09)and sample SN the lowest(10.05).The determined coefficients of friction ranged between 0.3-0.36,with sample AU exhibiting the lowest value and sample SM the highest.Sample SN showed the lowest wear rate of 3.53×10^(9) g/min,while the wear rates of samples TY,AU,and SM were 5.64×10^(8),8.19×10^(9),and 2.10×10^(8) g/min,respectively.The relative service life of samples SN,TY,and AU were similar,with average values of 2778.09,2725.41,and 2717.34 min,respectively,and SM had a relatively low service life(2017.82 min).We conclude that the overall performances of Nigerian brake pads do not meet all the specifications for friction materials used in road vehicle brake linings and pads.