In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field h...In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.展开更多
A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows throug...A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.展开更多
This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445...This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445×10^(4).Using a hot-wire anemometer and an electrical data acquisition system,the influences of millisecond pulsed plasma actuation with different burst frequencies and duty cycles on the microscale coherent structures near the wall of the turbulent boundary layer(TBL)are studied.The experimental results show that the SBP-PA can effectively reduce the frictional drag of the TBL.When the duty cycle exceeds 30%,the TDR rate is greater than 11%,and the optimal drag reduction rate of 13.69%is obtained at a duty cycle of 50%.Furthermore,optimizing the electrical parameters reveals that increasing the burst frequency significantly reduces the velocity distribution in the logarithmic region of the TBL.When the normalized burst frequency reaches f+=2πf_(p)d/U_(∞)=7.196,the optimal TDR effectiveness is 16.97%,indicating a resonance phenomenon between the pulsed plasma actuation and the microscale coherent structures near the wall.Therefore,reasonably selecting the electrical parameters of the plasma actuator is expected to significantly improve the TDR effect.展开更多
Wind speed scaling in similarity law in wind-generated waves and the drag coefficient are studied. In analyzing the data in the wind wave channel, it is found that the u* scaling greatly reduces the scatter in the U1...Wind speed scaling in similarity law in wind-generated waves and the drag coefficient are studied. In analyzing the data in the wind wave channel, it is found that the u* scaling greatly reduces the scatter in the U10 scaling. The u* scaling has much less scatter than the scaling using other wind speeds. The friction velocity seems to play a distinctive role in wave growth. The result is important in the applications of the similarity law and in wave modeling. In theory it gives an insight into the mechanism of wind wave interaction. It is found that wave steepness is important in influencing the drag coefficient. The variability of the coefficients in the currently widely used drag form can be explained by the differences in wave steepness in the observations. A drag coefficient model with wind speed and wave steepness as parameters is proposed. An explanation for Kahma's result that the u, scaling does not reduce the scatter in the U10 scaling is given.展开更多
As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposi...As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.展开更多
针对塔里木盆地台盆区超深小井眼定向钻井机械钻速低、钻头使用寿命短、常规螺杆钻具脱胶脱扣、钻井液稳定性差和产层喷漏同存等难题,研究形成了塔里木盆地超深小井眼定向钻井提速提效关键技术。以标准行程钻速和钻头进尺为指标,采用统...针对塔里木盆地台盆区超深小井眼定向钻井机械钻速低、钻头使用寿命短、常规螺杆钻具脱胶脱扣、钻井液稳定性差和产层喷漏同存等难题,研究形成了塔里木盆地超深小井眼定向钻井提速提效关键技术。以标准行程钻速和钻头进尺为指标,采用统计分析法优选了适用于目的层的ϕ149.2 mm/ϕ165.1 mm KS1352DGRX型钻头和ϕ120.7 mm KDM1062TR型钻头;对比国内外抗高温螺杆现状,确定了井底温度低于180℃时推荐使用国产抗高温螺杆,高于180℃时推荐使用全金属螺杆或进口耐高温螺杆;采用理论分析结合数值模拟的方法,优化设计了小尺寸降摩减阻工具,并优化了其安放位置;优选抗盐高温高压降滤失剂和抑制剂,研选除氧剂等,制定合理pH值调控和钙离子补充措施,形成了抗温200℃钻井液;分析了顺北油气田产层钻进喷漏同层的特点,确定了“降密度+井口控压+优化排量”的井控基本原则。塔里木盆地5口井应用了超深小井眼定向钻井提速提效关键技术,小井眼段平均机械钻速提高了113.24%,平均井径扩大率5.57%,平均钻井周期缩短了35.03%,均未发生井下故障和复杂情况。超深小井眼定向钻井提速提效技术为塔里木盆地勘探开发提供了技术支撑。展开更多
文摘In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.
基金Supported by the National Natural Science Foundation of China (Grant No. 50676002)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20040005008)the Beijing Best Innovation Person Select-ing Project (2006)
文摘A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.
基金supported by National Natural Science Foundation of China(Nos.61971345 and 12175177)the Foundation for Key Laboratories of National Defense Science and Technology of China(No.614220120030810).
文摘This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445×10^(4).Using a hot-wire anemometer and an electrical data acquisition system,the influences of millisecond pulsed plasma actuation with different burst frequencies and duty cycles on the microscale coherent structures near the wall of the turbulent boundary layer(TBL)are studied.The experimental results show that the SBP-PA can effectively reduce the frictional drag of the TBL.When the duty cycle exceeds 30%,the TDR rate is greater than 11%,and the optimal drag reduction rate of 13.69%is obtained at a duty cycle of 50%.Furthermore,optimizing the electrical parameters reveals that increasing the burst frequency significantly reduces the velocity distribution in the logarithmic region of the TBL.When the normalized burst frequency reaches f+=2πf_(p)d/U_(∞)=7.196,the optimal TDR effectiveness is 16.97%,indicating a resonance phenomenon between the pulsed plasma actuation and the microscale coherent structures near the wall.Therefore,reasonably selecting the electrical parameters of the plasma actuator is expected to significantly improve the TDR effect.
基金This work was supported by the National Natural Science Foundation of China under contract No.40106001.
文摘Wind speed scaling in similarity law in wind-generated waves and the drag coefficient are studied. In analyzing the data in the wind wave channel, it is found that the u* scaling greatly reduces the scatter in the U10 scaling. The u* scaling has much less scatter than the scaling using other wind speeds. The friction velocity seems to play a distinctive role in wave growth. The result is important in the applications of the similarity law and in wave modeling. In theory it gives an insight into the mechanism of wind wave interaction. It is found that wave steepness is important in influencing the drag coefficient. The variability of the coefficients in the currently widely used drag form can be explained by the differences in wave steepness in the observations. A drag coefficient model with wind speed and wave steepness as parameters is proposed. An explanation for Kahma's result that the u, scaling does not reduce the scatter in the U10 scaling is given.
基金Project supported by the National Basic Research Program of China(973 Program)(No.2014CB744802)the National Natural Science Foundation of China(No.11772194)
文摘As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.
文摘针对塔里木盆地台盆区超深小井眼定向钻井机械钻速低、钻头使用寿命短、常规螺杆钻具脱胶脱扣、钻井液稳定性差和产层喷漏同存等难题,研究形成了塔里木盆地超深小井眼定向钻井提速提效关键技术。以标准行程钻速和钻头进尺为指标,采用统计分析法优选了适用于目的层的ϕ149.2 mm/ϕ165.1 mm KS1352DGRX型钻头和ϕ120.7 mm KDM1062TR型钻头;对比国内外抗高温螺杆现状,确定了井底温度低于180℃时推荐使用国产抗高温螺杆,高于180℃时推荐使用全金属螺杆或进口耐高温螺杆;采用理论分析结合数值模拟的方法,优化设计了小尺寸降摩减阻工具,并优化了其安放位置;优选抗盐高温高压降滤失剂和抑制剂,研选除氧剂等,制定合理pH值调控和钙离子补充措施,形成了抗温200℃钻井液;分析了顺北油气田产层钻进喷漏同层的特点,确定了“降密度+井口控压+优化排量”的井控基本原则。塔里木盆地5口井应用了超深小井眼定向钻井提速提效关键技术,小井眼段平均机械钻速提高了113.24%,平均井径扩大率5.57%,平均钻井周期缩短了35.03%,均未发生井下故障和复杂情况。超深小井眼定向钻井提速提效技术为塔里木盆地勘探开发提供了技术支撑。