The traditional description of atomic-scale friction, as investigated in Friction force microscopy, in terms of mechanical stick-slip instabilities appears so successful that it obscures the actual mechanisms of frict...The traditional description of atomic-scale friction, as investigated in Friction force microscopy, in terms of mechanical stick-slip instabilities appears so successful that it obscures the actual mechanisms of frictional energy dissipation. More sophisticated theoretical approach, which takes into account damping explicitly, reveals the existence of some hidden, unexplained problems, like the universal nearly-critical damping and unexpectedly high value of the dissipation rate. In this paper, we combine analysis in the framework of nonequilibrium statistical mechanics with simple atomistic modeling to show that the hidden problems of atomic scale friction find their origin in the nontrivial character of energy dissipation that is non-local and dominated by memory effects, which have not been addressed before in the context of dry, atomic-scale friction.展开更多
This paper presents the results from unidirectional shaking table tests of two reduced scale steel models of a building frame, with one and two floors, respectively. These frames incorporate friction dissipators at ev...This paper presents the results from unidirectional shaking table tests of two reduced scale steel models of a building frame, with one and two floors, respectively. These frames incorporate friction dissipators at every floor. The inputs are sine-dwells and artificial and registered earthquakes. This study is part of a larger research project aiming to assess the seismic efficiency of friction dissipators by means of an integrated numerical and experimental approach. Inside this framework, the main objectives of these experiments are to: (i) collect a wide range of results to calibrate a numerical model derived within the project, (ii) clarify some of the most controversial issues about friction dissipators (including behavior for inputs containing pulses, capacity to reduce resonance peaks, introduction of high frequencies in the response, and self- generated eccentricities), (iii) better understand their dynamic behavior, (iv) provide insight on the feasibility and reliability of using simple friction dissipators for seismic protection of building structures and (v) characterize the hysteretic behavior of these devices. Most of these objectives are satisfactorily reached and relevant conclusions are stated.展开更多
The present study concentrates on the analysis of MHD free convection flow past an inclined stretching sheet. The viscous dissipation and radiation effects are assumed in the heat equation. Approximation solutions hav...The present study concentrates on the analysis of MHD free convection flow past an inclined stretching sheet. The viscous dissipation and radiation effects are assumed in the heat equation. Approximation solutions have been derived for velocity, temperature, concentration, Nusselt number, skin friction and Sherwood number using Nachtsheim-Swigert shooting iteration technique along with the six-order Runge-Kutta iteration scheme. Graphs are plotted to find out the characteristics of different physical parameters. The variations of physical parameters on skin friction coefficient, Nusselt number and Sherwood number are displayed via table.展开更多
The pseudo-viscous frictional energy dissipator(PVFED) is a new energy dissipator. This dissipator can be widely used in engineering for not only the friction is in direct ratio to velocity, but also the problem of ...The pseudo-viscous frictional energy dissipator(PVFED) is a new energy dissipator. This dissipator can be widely used in engineering for not only the friction is in direct ratio to velocity, but also the problem of viscous energy dissipator mucilage easily leaked has been overcome. The problem of how to get response of the PVFED sys- tem need to be solved before this dissipator can be used widely in engineering. The response calculation methods of the PVFED system on sina load was researched. Wilson-θ,Newmark-β and a precise integration algorithm was used separately to solve the system response and the calculation result in a different time step was compared. It was found from comparison that three calculation results were almost equivalent in a small time step. Calculation precision of Newmark-β and Wilson-θ was reduced and high calculation precision of a precise integration algorithm was kept in a large time step. The results show that it is an effective way to solve the response of a PVFED system by a precise integration method.展开更多
This study investigates the effect of contact surface curvatures on the friction response under varying tangential loadings using a finite element(FE)model.The results showed that the geometry of the surface influence...This study investigates the effect of contact surface curvatures on the friction response under varying tangential loadings using a finite element(FE)model.The results showed that the geometry of the surface influences the contact force at the interface and reduces the friction effect through an unsteady distribution of the contact force.The relationship between the friction effect,excitation,and contact surface shape was also examined,revealing a linear inverse relationship between the friction and curvature.The findings provide a comprehensive understanding of the frictional interactions between elastic bodies and highlight the role of curvature as a design parameter for regulating the friction effect.展开更多
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to ca...Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.展开更多
Professor T. T. Soong is one of the early pioneers in field of earthquake responsc control of structures. A new type of smart damper, which is based on an Energy Dissipating Restraint (EDR), is presented in this pap...Professor T. T. Soong is one of the early pioneers in field of earthquake responsc control of structures. A new type of smart damper, which is based on an Energy Dissipating Restraint (EDR), is presented in this paper. The EDR by Nims and Kelly, which has a triangle hysteretic loop, behaves like an active variable stiffness system (AVS) and possesses the basic characteristics of a linear viscous damper but has difficulty in capturing the output and large stroke simultaneously needed for practical applicataions in engineering structures. In order to overcome this limitation, the friction surface in the original Sumitomo EDR is divided into two parts with low and high friction coefficients in this paper. The results of finite element analysis studies show that the new type of smart friction damper enables large friction force in proportion to relative displacement between two ends of the damper and has a large allowable displacement to fit the demands of engineering applications. However, unlike the EDR by Nims and Kelly, this type of friction variable damper cannot self re-center. However, the lateral stiffness can be used to restore the structure. The nonlinear time history analysis of earthquake response for a structure equipped with the proposed friction variable dampers was carried out using the IDARC computer program. The results indicate that the proposed damper can successfully reduce the earthquake response of a structure.展开更多
This paper considers the effect of wave energy dissipation induced by sea-bottom friction on the computational results of water wave refraction and diffraction with the parabolic equation method. The presented results...This paper considers the effect of wave energy dissipation induced by sea-bottom friction on the computational results of water wave refraction and diffraction with the parabolic equation method. The presented results show that the friction factor formula adopted in this paper is of higher numerical accuracy than that introduced by Dalrymphe (1984), and it can be used to compute wave propagation over large open areas.展开更多
Although atomic stick–slip friction has been extensively studied since its first demonstration on graphite,the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we p...Although atomic stick–slip friction has been extensively studied since its first demonstration on graphite,the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics(MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding(known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces.For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However,for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.展开更多
Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differe...Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differentiable with locally Lipschitz continuous gradient and bounded from below. In particular when φ is convex, all solutions tend to minimize the potential φ as time tends to infinity and the existence of one bounded trajectory implies the weak convergence of all solutions to equilibrium points.展开更多
Holding an object by clamping force is a fundamental phenomena.Layered or laminated architectures with internal sliding features are essential mechanism in natural and man-made structural system.In this paper,we combi...Holding an object by clamping force is a fundamental phenomena.Layered or laminated architectures with internal sliding features are essential mechanism in natural and man-made structural system.In this paper,we combine the layered architecture and clamping mechanism to form a multilayered clamper and study the clamping force with internal friction.Our investigations show that the clamping force and energy dissipation are very much depend on the number of layers,its geometry and elasticity,as well as internal friction.The central goal of studying the multilayered clamp is not only to predict the clamping force,but also as a representative case to help finding some clue on the universal behaviours of multilayered architectures with internal friction.展开更多
文摘The traditional description of atomic-scale friction, as investigated in Friction force microscopy, in terms of mechanical stick-slip instabilities appears so successful that it obscures the actual mechanisms of frictional energy dissipation. More sophisticated theoretical approach, which takes into account damping explicitly, reveals the existence of some hidden, unexplained problems, like the universal nearly-critical damping and unexpectedly high value of the dissipation rate. In this paper, we combine analysis in the framework of nonequilibrium statistical mechanics with simple atomistic modeling to show that the hidden problems of atomic scale friction find their origin in the nontrivial character of energy dissipation that is non-local and dominated by memory effects, which have not been addressed before in the context of dry, atomic-scale friction.
基金Supported by Spanish Government,Grant CGL2008-00869/BTE
文摘This paper presents the results from unidirectional shaking table tests of two reduced scale steel models of a building frame, with one and two floors, respectively. These frames incorporate friction dissipators at every floor. The inputs are sine-dwells and artificial and registered earthquakes. This study is part of a larger research project aiming to assess the seismic efficiency of friction dissipators by means of an integrated numerical and experimental approach. Inside this framework, the main objectives of these experiments are to: (i) collect a wide range of results to calibrate a numerical model derived within the project, (ii) clarify some of the most controversial issues about friction dissipators (including behavior for inputs containing pulses, capacity to reduce resonance peaks, introduction of high frequencies in the response, and self- generated eccentricities), (iii) better understand their dynamic behavior, (iv) provide insight on the feasibility and reliability of using simple friction dissipators for seismic protection of building structures and (v) characterize the hysteretic behavior of these devices. Most of these objectives are satisfactorily reached and relevant conclusions are stated.
文摘The present study concentrates on the analysis of MHD free convection flow past an inclined stretching sheet. The viscous dissipation and radiation effects are assumed in the heat equation. Approximation solutions have been derived for velocity, temperature, concentration, Nusselt number, skin friction and Sherwood number using Nachtsheim-Swigert shooting iteration technique along with the six-order Runge-Kutta iteration scheme. Graphs are plotted to find out the characteristics of different physical parameters. The variations of physical parameters on skin friction coefficient, Nusselt number and Sherwood number are displayed via table.
文摘The pseudo-viscous frictional energy dissipator(PVFED) is a new energy dissipator. This dissipator can be widely used in engineering for not only the friction is in direct ratio to velocity, but also the problem of viscous energy dissipator mucilage easily leaked has been overcome. The problem of how to get response of the PVFED sys- tem need to be solved before this dissipator can be used widely in engineering. The response calculation methods of the PVFED system on sina load was researched. Wilson-θ,Newmark-β and a precise integration algorithm was used separately to solve the system response and the calculation result in a different time step was compared. It was found from comparison that three calculation results were almost equivalent in a small time step. Calculation precision of Newmark-β and Wilson-θ was reduced and high calculation precision of a precise integration algorithm was kept in a large time step. The results show that it is an effective way to solve the response of a PVFED system by a precise integration method.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021R1F1A1052123).
文摘This study investigates the effect of contact surface curvatures on the friction response under varying tangential loadings using a finite element(FE)model.The results showed that the geometry of the surface influences the contact force at the interface and reduces the friction effect through an unsteady distribution of the contact force.The relationship between the friction effect,excitation,and contact surface shape was also examined,revealing a linear inverse relationship between the friction and curvature.The findings provide a comprehensive understanding of the frictional interactions between elastic bodies and highlight the role of curvature as a design parameter for regulating the friction effect.
基金Science and Technology Fund of NWPU Under Grant No. M450211 Seed Fund of NWPU Under Grant No. Z200729
文摘Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
基金National Basic Research Program of China (973 Program) Under Grant No. 2007CB714200
文摘Professor T. T. Soong is one of the early pioneers in field of earthquake responsc control of structures. A new type of smart damper, which is based on an Energy Dissipating Restraint (EDR), is presented in this paper. The EDR by Nims and Kelly, which has a triangle hysteretic loop, behaves like an active variable stiffness system (AVS) and possesses the basic characteristics of a linear viscous damper but has difficulty in capturing the output and large stroke simultaneously needed for practical applicataions in engineering structures. In order to overcome this limitation, the friction surface in the original Sumitomo EDR is divided into two parts with low and high friction coefficients in this paper. The results of finite element analysis studies show that the new type of smart friction damper enables large friction force in proportion to relative displacement between two ends of the damper and has a large allowable displacement to fit the demands of engineering applications. However, unlike the EDR by Nims and Kelly, this type of friction variable damper cannot self re-center. However, the lateral stiffness can be used to restore the structure. The nonlinear time history analysis of earthquake response for a structure equipped with the proposed friction variable dampers was carried out using the IDARC computer program. The results indicate that the proposed damper can successfully reduce the earthquake response of a structure.
文摘This paper considers the effect of wave energy dissipation induced by sea-bottom friction on the computational results of water wave refraction and diffraction with the parabolic equation method. The presented results show that the friction factor formula adopted in this paper is of higher numerical accuracy than that introduced by Dalrymphe (1984), and it can be used to compute wave propagation over large open areas.
基金support from the National Natural Science Foundation of China (Grants 11272177, 11422218, 11432008)the National Basic Research Program of China (Grants 2013CB933003, 2013CB934201 and 2015CB351903)+2 种基金the Tsinghua University Initiative Scientific Research Programthe Thousand Young Talents Program of Chinathe financial support from China Postdoctoral Science Foundation (Grant 2014M562055)
文摘Although atomic stick–slip friction has been extensively studied since its first demonstration on graphite,the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics(MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding(known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces.For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However,for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.
基金support by the France-Tunisia cooperation under the auspices of the CNRS/DGRSRT agreement No. 08/R 15-06:Systèmes dynamiques et équationsd'évolutionLaboratoire Jacques-Louis Lions under the auspices of the Fondation Sciences Mathematiques de Paris
文摘Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differentiable with locally Lipschitz continuous gradient and bounded from below. In particular when φ is convex, all solutions tend to minimize the potential φ as time tends to infinity and the existence of one bounded trajectory implies the weak convergence of all solutions to equilibrium points.
基金This work was supported by Xi’an University of Architecture and Technology(No.002/2040221134).
文摘Holding an object by clamping force is a fundamental phenomena.Layered or laminated architectures with internal sliding features are essential mechanism in natural and man-made structural system.In this paper,we combine the layered architecture and clamping mechanism to form a multilayered clamper and study the clamping force with internal friction.Our investigations show that the clamping force and energy dissipation are very much depend on the number of layers,its geometry and elasticity,as well as internal friction.The central goal of studying the multilayered clamp is not only to predict the clamping force,but also as a representative case to help finding some clue on the universal behaviours of multilayered architectures with internal friction.