The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fat...The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.展开更多
In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in tbe processed...In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in tbe processed zone (PZ)with a thickness of about 2.5mm. The yield strength (325 MPa) and ultimate tensile strength (451 MPa) of FSP IF steel were significantly higher than those of base material (BM) (192 and 314 MPa), while the elongation (67.5%) almost remained unchanged compared with the BM (66.2%). The average microhardness value of the PZ was about 130 HV, 1.3 times bigher than that of the BM. In addition, the FSP IF steel showed a more positive corrosion potential and lower corrosion current density than the BM, exhibiting lower corrosion tendency and corrosion rates in a 3.5 wt% NaCl solution. Furtbernlore, FSP IF steel exhibited higher fatigue life than the BM both in air and NaCl solution. Corrosion fatigue fracture surfaces of FSP IF steel mainly exhihited a typical transgranular fracture with fatigue striations, while the BM predominantly presented an intergranular fracture. Enhanced corrosion fatigue performance was mainly attributed to the increased resistance of nucleation and growth of fatigue cracks. The corrosion fatigue mechanism was primarily controlled by anodic dissolution under the combined effect of cyclic stress and corrosive solution.展开更多
Friction stir welding(FSW) was used to weld dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys in this work.Influences of sheet configuration on microstructure and mechanical properties of the joints were mainly discussed...Friction stir welding(FSW) was used to weld dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys in this work.Influences of sheet configuration on microstructure and mechanical properties of the joints were mainly discussed.Results showed that rather different joint cross sections were obtained when using different sheet configurations.Coarser β' phases can be observed at the heat affected zone(HAZ) of the Al-Mg-Si alloy side,which was the main factor affecting the tensile properties and the fatigue properties.Tensile strengths of the dissimilar Al-Mg-Si/Al-Zn-Mg joints using both configurations were higher than that of the Al-Mg-Si FSW joint.When the Al-Zn-Mg alloy was located at the advancing side(AS),the joints owned better fatigue properties due to the bridging effect of the big secondary phase particles.展开更多
In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanogra...In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanograin layer were compared with that of coarse-structure counterpart.More than threefold increase in the hardness was observed due to the formation of nanograin layer.The size of nanograms in the stir zone was within 30-150 nm.This resulted in 50%increase in the fatigue strength of nanostructured specimen.Furthermore,the fracture surfaces were characterized using field emission scanning electron microscopy and scanning electron microscopy.As for the fatigue behavior of nanograin IF steel,the fracture surface was characterized by the formation of nanospacing striations and nanodimples.Besides,the nanograin structure pronounced the passivity and exhibited higher corrosion resistance.展开更多
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041057)Scholarship Council of Shanxi, China (No. 2005-22)
文摘The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.
基金sponsorship from the National Natural Science Foundation of China under grant Nos.51404180,51274161 and U1360105
文摘In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in tbe processed zone (PZ)with a thickness of about 2.5mm. The yield strength (325 MPa) and ultimate tensile strength (451 MPa) of FSP IF steel were significantly higher than those of base material (BM) (192 and 314 MPa), while the elongation (67.5%) almost remained unchanged compared with the BM (66.2%). The average microhardness value of the PZ was about 130 HV, 1.3 times bigher than that of the BM. In addition, the FSP IF steel showed a more positive corrosion potential and lower corrosion current density than the BM, exhibiting lower corrosion tendency and corrosion rates in a 3.5 wt% NaCl solution. Furtbernlore, FSP IF steel exhibited higher fatigue life than the BM both in air and NaCl solution. Corrosion fatigue fracture surfaces of FSP IF steel mainly exhihited a typical transgranular fracture with fatigue striations, while the BM predominantly presented an intergranular fracture. Enhanced corrosion fatigue performance was mainly attributed to the increased resistance of nucleation and growth of fatigue cracks. The corrosion fatigue mechanism was primarily controlled by anodic dissolution under the combined effect of cyclic stress and corrosive solution.
基金supported by the International S&T Cooperation Program of China(ISTCP) under grant No.2012DFR50580
文摘Friction stir welding(FSW) was used to weld dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys in this work.Influences of sheet configuration on microstructure and mechanical properties of the joints were mainly discussed.Results showed that rather different joint cross sections were obtained when using different sheet configurations.Coarser β' phases can be observed at the heat affected zone(HAZ) of the Al-Mg-Si alloy side,which was the main factor affecting the tensile properties and the fatigue properties.Tensile strengths of the dissimilar Al-Mg-Si/Al-Zn-Mg joints using both configurations were higher than that of the Al-Mg-Si FSW joint.When the Al-Zn-Mg alloy was located at the advancing side(AS),the joints owned better fatigue properties due to the bridging effect of the big secondary phase particles.
文摘In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanograin layer were compared with that of coarse-structure counterpart.More than threefold increase in the hardness was observed due to the formation of nanograin layer.The size of nanograms in the stir zone was within 30-150 nm.This resulted in 50%increase in the fatigue strength of nanostructured specimen.Furthermore,the fracture surfaces were characterized using field emission scanning electron microscopy and scanning electron microscopy.As for the fatigue behavior of nanograin IF steel,the fracture surface was characterized by the formation of nanospacing striations and nanodimples.Besides,the nanograin structure pronounced the passivity and exhibited higher corrosion resistance.