During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi...During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.展开更多
The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential ...The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.展开更多
Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring...Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved.展开更多
Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affe...Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.展开更多
Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in...Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was prop...The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experimentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.展开更多
The 3-axis flight table is an important device and a typical high performanceposition and speed servo system used in the hardware-in-the-loop simulation of flight controlsystem. Friction force and uncertainty are the ...The 3-axis flight table is an important device and a typical high performanceposition and speed servo system used in the hardware-in-the-loop simulation of flight controlsystem. Friction force and uncertainty are the main characteristics in the 3-axis flight table servosystem. Based on the description of dynamic and static model of a nonlinear Stribeck frictionmodel, and taking account of the practical uncertainties of 3-axis flight table servo system, theQFT controller is designed. Simulation and realtime results are presented.展开更多
Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designe...Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.展开更多
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis...In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.展开更多
Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accurac...Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then,we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance.展开更多
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Var...Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.展开更多
This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynami...This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynamic coefficient of friction with respect to the hydrodynamic Hersey parameter an analytic model is found. The model predicts the coefficient of friction as a function of the relative pressure, the relative Hersey parameter and the real contact coefficient of friction. Questions about local and global friction are raised in the validation of the model against flat tool sheet experiments. For some flat tool sheet experiments reasonable agreements are obtained assuming a rigid punch pressure distribution. The restricted number of user inputs makes the model useful in early tool design simulations.展开更多
A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parame...A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.展开更多
A friction model was established for impulse control design in a precision control system. First, the physical characteristics of the impulse in momentum, such as motion and energy, were analyzed and formulated. Then,...A friction model was established for impulse control design in a precision control system. First, the physical characteristics of the impulse in momentum, such as motion and energy, were analyzed and formulated. Then, experimental response to a new pulse with two harmonic expansions was studied. The first harmonic is the main pulse to drive the arm, and the second harmonic has two functions: its first half helps the main pulse eliminate the dead zone, and its second half, a negative pulse, stops the arm motion quickly. Finally, an impulse feedback controller was developed. Comparison between simulation and experiments shows the effectiveness of the proposed controller.展开更多
Based on the interaction of asperities and upperbound approach a mathematical model for simulation of friction phenomenon between dies and workpiece is proposed. Optimizing the mathematical model with respect to sever...Based on the interaction of asperities and upperbound approach a mathematical model for simulation of friction phenomenon between dies and workpiece is proposed. Optimizing the mathematical model with respect to several variables it is found that in addition to adhering, tearing, ploughing, etc., asperities workpiece can move wave-like along the surface layer and under certain circumstances they may disappear. If the asperities wavily move along the surface layer the friction coefficient depends on the geometry of asperities. However, the bonding strength of asperities, has no significant influence on friction coefficient. The depth of the plastic deformation layer is related to the geometry of asperities, too. The soundness of the prerequisite of the proposed model and some analytical results were verified by experiments.展开更多
Broad use of lightweight aluminium alloy parts in automobile manufacturing,aerospace,electronic communication,and rail transit is mainly formed through deep drawing process.Deep drawing friction is a key boundary cond...Broad use of lightweight aluminium alloy parts in automobile manufacturing,aerospace,electronic communication,and rail transit is mainly formed through deep drawing process.Deep drawing friction is a key boundary condition for controlling the forming quality of aluminium alloy parts.However,due to the oxidation and adhesion tendency of aluminium alloys,the tribological situations of aluminium alloy deep drawing(AADD)system is more complicated than those of traditional deep drawing of steel sheets.Therefore,the study of AADD friction is essential for manufacturing high-performance aluminium alloy parts.Herein,aiming to provide a valuable reference for researchers in related fields,a comprehensive review of AADD friction is provided,including friction mechanism,influencing factors,friction measurement,friction model,friction simulation,and lubrication-free friction control.Finally,a brief conclusion and several current challenges were discussed.展开更多
Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calc...Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calculation model for the real-time static steering torque.When the relative sliding speed is greater than 0.01 m/s,the influence of friction heating can not be ignored.An improved LuGre model is established to calculate the static real-time steering torque of tire and rubber track interchangeable chassis.Firstly,the friction heating model between rubber and ground is established.Combined with the influence of temperature on the dynamic performance of rubber material,the influence of friction heating on the stiffness and friction coefficient of rubber track is analyzed,and the improved LuGre friction model is established.The steering torque of tire and rubber track interchangeable chassis is affected by rubber material properties,steering speed,pavement type,and ambient temperature.Compared with the original Lu Gre model,the improved LuGre model captures the change in friction torque during multiple in-situ turns due to frictional heating.The error with the experimental data is small,which verifies the effectiveness of the improved LuGre model.展开更多
The Niumiangou landslide was the largest landslide triggered by the 2008 Wenchuan earthquake,which was significantly affected by the amplification effect of seismic acceleration.The ringshear experiments indicated tha...The Niumiangou landslide was the largest landslide triggered by the 2008 Wenchuan earthquake,which was significantly affected by the amplification effect of seismic acceleration.The ringshear experiments indicated that the materials in the source area of the Niumiangou landslide were subjected to friction degradation under a big shear displacement,which may result in rapid movement of the landslide.In order to better understand the landslide movement and study the effect of the friction degradation on movement mechanisms,the dynamic process of Niumiangou landslide was simulated with a new numerical method,which combines the finite difference method(FDM)and the discontinuous deformation analysis(DDA).First,the FDM was used to study the initiation time,amplification effect and velocity of the landslide.Afterwards,these initiation velocities were applied to the blocks in the DDA model by corresponding coordination in the FDM model.A displacementdependent friction model of the sliding surface was incorporated into DDA code to further understand the kinetic behavior of the landslide.The results show that the displacement-dependent friction strongly decreases the friction coefficient of sliding surface under a big displacement,which can obviously promote the run-out and velocity of landslide.The model output well matches the topographic map formed by the landslide.This implies that the proposed model can be applied to the simulation of earthquake-induced landslides with amplification effect,and the friction degradation model is important to clarify the movement mechanism of high-speed and long-distance landslides.展开更多
Dynamic responses of a multi-storey building without or with a sliding base-isolation device for ground shock induced by an in-tunnel explosion are numerically analyzed. The effect of an adjacent tunnel in between the...Dynamic responses of a multi-storey building without or with a sliding base-isolation device for ground shock induced by an in-tunnel explosion are numerically analyzed. The effect of an adjacent tunnel in between the building and the explosion tunnel, which affects ground shock propagation , is considered in the analysis. Different modeling methods, such as the eight-node equal-parametric finite element and mass-lumped system, are used to establish the coupling model consisting of the two adjacent tunnels, the surrounding soil medium with the Lysmer viscous boundary condition, and the multi-storey building with or without the sliding base-isolation device. In numerical calculations , a continuous friction model, which is different from the traditional Coulomb friction model, is adopted to improve the computational efficiency and reduce the accumulated errors. Some example analyses are subsequently performed to study the response characteristics of the building and the sliding base-isolation device to ground shock. The effect of the adjacent tunnel in between the building and the explosion tunnel on the ground shock wave propagation is also investigated. The final conclusions based on the numerical results will provide some guidance in engineering practice.展开更多
文摘During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.
基金supported by National Nature Science Foundation of China (Grant No.42177157)the Science and Technology Program of Liaoning Province (Grant No.2023JH1/10400003)the Applied Basic Research Programof Liaoning Province (Grant No.2023JH2/101300153).
文摘The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.
基金Project supported by the National Natural Science Foundation of China(Grant No.11872033)the Beijing Natural Science Foundation,China(Grant No.3172017)。
文摘Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program for New Century Excellent Talents in University,China
文摘Friction is a critical issue in plastic forming which influences forming force, metal flow, forming quality and service life of die. Since friction is a highly nonlinear physical phenomenon which is interactively affected by so many factors, great efforts have been made to study the friction mechanism and controlling. The research progress of friction issues in plastic forming was summarized and discussed from four aspects: testing, characterizing, modeling and optimization/controlling. Considering urgent demands for green, efficient and precise forming of high-performance, lightweight and complex components in high-tech industries such as aerospace and automotive, the trends and challenges of friction study in plastic forming were proposed.
基金This project was supported by the Aeronautics Foundation of China (00E21022).
文摘Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
文摘The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experimentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.
文摘The 3-axis flight table is an important device and a typical high performanceposition and speed servo system used in the hardware-in-the-loop simulation of flight controlsystem. Friction force and uncertainty are the main characteristics in the 3-axis flight table servosystem. Based on the description of dynamic and static model of a nonlinear Stribeck frictionmodel, and taking account of the practical uncertainties of 3-axis flight table servo system, theQFT controller is designed. Simulation and realtime results are presented.
基金Supported by State Key Laboratory of Explosion Science and Technology(QNKT11-08)
文摘Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.
基金Supported by National Natural Science Foundation of China(Grant No.51375346)Doctoral Fund of Ministry of Education of China(Grant No.20110072110056)
文摘In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11872033)the Beijing Natural Science Foundation, China (Grant No. 3172017)。
文摘Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then,we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance.
基金supported by the Iran National Science Foundation(Grant 96006257)。
文摘Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.
基金supported by the Swedish Foundation for Strategic Research(PV08-0041)
文摘This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynamic coefficient of friction with respect to the hydrodynamic Hersey parameter an analytic model is found. The model predicts the coefficient of friction as a function of the relative pressure, the relative Hersey parameter and the real contact coefficient of friction. Questions about local and global friction are raised in the validation of the model against flat tool sheet experiments. For some flat tool sheet experiments reasonable agreements are obtained assuming a rigid punch pressure distribution. The restricted number of user inputs makes the model useful in early tool design simulations.
基金supported by Ministry of Knowledge and Economy,Koreathe ITRC(Information Technology Research Center)support program(ⅡTA-2009-C1090-0902-0004)
文摘A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.
基金The Foundation of Sichuan Education Department (No.09ZC24)
文摘A friction model was established for impulse control design in a precision control system. First, the physical characteristics of the impulse in momentum, such as motion and energy, were analyzed and formulated. Then, experimental response to a new pulse with two harmonic expansions was studied. The first harmonic is the main pulse to drive the arm, and the second harmonic has two functions: its first half helps the main pulse eliminate the dead zone, and its second half, a negative pulse, stops the arm motion quickly. Finally, an impulse feedback controller was developed. Comparison between simulation and experiments shows the effectiveness of the proposed controller.
基金This is a project of the cooperative program between the Department of Materials Engineering of Northwestern Polytechnical University of the People's Republic of China and the Institute for Metal Forming at Lehigh University of the United States of Ameri
文摘Based on the interaction of asperities and upperbound approach a mathematical model for simulation of friction phenomenon between dies and workpiece is proposed. Optimizing the mathematical model with respect to several variables it is found that in addition to adhering, tearing, ploughing, etc., asperities workpiece can move wave-like along the surface layer and under certain circumstances they may disappear. If the asperities wavily move along the surface layer the friction coefficient depends on the geometry of asperities. However, the bonding strength of asperities, has no significant influence on friction coefficient. The depth of the plastic deformation layer is related to the geometry of asperities, too. The soundness of the prerequisite of the proposed model and some analytical results were verified by experiments.
基金the financial support by the National Natural Science Foundation of China(11502044,U1906233,and 52175289)the Fundamental Research Funds for the Central Universities(DUT17RC(3)104)the National Key R&D Program of China(2018YFA0703 and 2019YFA0708804).
文摘Broad use of lightweight aluminium alloy parts in automobile manufacturing,aerospace,electronic communication,and rail transit is mainly formed through deep drawing process.Deep drawing friction is a key boundary condition for controlling the forming quality of aluminium alloy parts.However,due to the oxidation and adhesion tendency of aluminium alloys,the tribological situations of aluminium alloy deep drawing(AADD)system is more complicated than those of traditional deep drawing of steel sheets.Therefore,the study of AADD friction is essential for manufacturing high-performance aluminium alloy parts.Herein,aiming to provide a valuable reference for researchers in related fields,a comprehensive review of AADD friction is provided,including friction mechanism,influencing factors,friction measurement,friction model,friction simulation,and lubrication-free friction control.Finally,a brief conclusion and several current challenges were discussed.
基金funded by the National Key Research and Development Program of China(Grant No.2016YFC0802900)。
文摘Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calculation model for the real-time static steering torque.When the relative sliding speed is greater than 0.01 m/s,the influence of friction heating can not be ignored.An improved LuGre model is established to calculate the static real-time steering torque of tire and rubber track interchangeable chassis.Firstly,the friction heating model between rubber and ground is established.Combined with the influence of temperature on the dynamic performance of rubber material,the influence of friction heating on the stiffness and friction coefficient of rubber track is analyzed,and the improved LuGre friction model is established.The steering torque of tire and rubber track interchangeable chassis is affected by rubber material properties,steering speed,pavement type,and ambient temperature.Compared with the original Lu Gre model,the improved LuGre model captures the change in friction torque during multiple in-situ turns due to frictional heating.The error with the experimental data is small,which verifies the effectiveness of the improved LuGre model.
基金supported by the National Natural Science Foundation of China(Nos.4167230041902290)Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2017K015)。
文摘The Niumiangou landslide was the largest landslide triggered by the 2008 Wenchuan earthquake,which was significantly affected by the amplification effect of seismic acceleration.The ringshear experiments indicated that the materials in the source area of the Niumiangou landslide were subjected to friction degradation under a big shear displacement,which may result in rapid movement of the landslide.In order to better understand the landslide movement and study the effect of the friction degradation on movement mechanisms,the dynamic process of Niumiangou landslide was simulated with a new numerical method,which combines the finite difference method(FDM)and the discontinuous deformation analysis(DDA).First,the FDM was used to study the initiation time,amplification effect and velocity of the landslide.Afterwards,these initiation velocities were applied to the blocks in the DDA model by corresponding coordination in the FDM model.A displacementdependent friction model of the sliding surface was incorporated into DDA code to further understand the kinetic behavior of the landslide.The results show that the displacement-dependent friction strongly decreases the friction coefficient of sliding surface under a big displacement,which can obviously promote the run-out and velocity of landslide.The model output well matches the topographic map formed by the landslide.This implies that the proposed model can be applied to the simulation of earthquake-induced landslides with amplification effect,and the friction degradation model is important to clarify the movement mechanism of high-speed and long-distance landslides.
基金Supported by National Science Fund for Distinguished Young Scholars of China (No. 50425824)National Natural Science Foundation of China (No. 50528808)
文摘Dynamic responses of a multi-storey building without or with a sliding base-isolation device for ground shock induced by an in-tunnel explosion are numerically analyzed. The effect of an adjacent tunnel in between the building and the explosion tunnel, which affects ground shock propagation , is considered in the analysis. Different modeling methods, such as the eight-node equal-parametric finite element and mass-lumped system, are used to establish the coupling model consisting of the two adjacent tunnels, the surrounding soil medium with the Lysmer viscous boundary condition, and the multi-storey building with or without the sliding base-isolation device. In numerical calculations , a continuous friction model, which is different from the traditional Coulomb friction model, is adopted to improve the computational efficiency and reduce the accumulated errors. Some example analyses are subsequently performed to study the response characteristics of the building and the sliding base-isolation device to ground shock. The effect of the adjacent tunnel in between the building and the explosion tunnel on the ground shock wave propagation is also investigated. The final conclusions based on the numerical results will provide some guidance in engineering practice.