A new measuring method──relative revolution principle,is introduced in dealing with friction moment measurement of a counter. The instrument manufactured based on this principle is efficient, accurate, and easy to o...A new measuring method──relative revolution principle,is introduced in dealing with friction moment measurement of a counter. The instrument manufactured based on this principle is efficient, accurate, and easy to operate, and a continuous dynamic measurement of an absolute friction moment is achieved intelligently. The principle is suitable to the measurement of friction moments of many kinds of elements and some special characteristics, and is of good engineering significance.展开更多
Tapered roller bearings(TRBs) can withstand axial loads, radial loads, and overturning moments. The performance, safety, and efficiency of rotating machinery are directly influenced by the friction moments within the ...Tapered roller bearings(TRBs) can withstand axial loads, radial loads, and overturning moments. The performance, safety, and efficiency of rotating machinery are directly influenced by the friction moments within the TRBs. However, most current research has relied on empirical formulas that focus on axial loads. Additionally, the friction coefficient between the rollers and the inner ring rib has been defined using simple empirical methods. In actual applications, the loads on TRBs are not purely axial or radial, and simple empirical friction coefficients do not adequately account for the varying lubrication conditions. To address this challenge, this study proposes an improved method for calculating the friction moments of TRB under combined axial and radial loads. This study employs a calculation method for sliding friction coefficients that can model dry, boundary, elastohydrodynamic, and mixed lubrication conditions. To demonstrate the advantages of the proposed method, the friction moments obtained using the existing and proposed methods are compared. Additionally, the influence of TRB structural parameters on the friction moment is discussed. An experimental study is conducted to validate the effectiveness of the proposed method. The findings provide valuable insights for designing TRB structural parameters to minimize friction moments.展开更多
This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is t...This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is to know the proportion of the friction moment caused by each frictional source in the bearing's total friction moment, which is helpful to optimize the bearing design to deduce the friction moment. In the model, the cage dynamic equations considering six degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved.The good trends with different loads between the measured friction moments and computational results prove that the model under constant rate was validated. The computational results show that when the speed was set at 5 r/min, the bearing's maximum total friction moment when oscillation occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory motion, the proportion of the friction moment caused by cage in the bearing's total friction moment was very high, and it increased with the increasing speed. The analyses of different cage thicknesses and different clearances between cage pocket and ball show that smaller thickness and clearance were preferred.展开更多
A compound pendulum based measurement method is put forward and the relevant equipment is designed. By using the variation of angle with the time acquired by an angular displacement sensor, the moment of inertia is ob...A compound pendulum based measurement method is put forward and the relevant equipment is designed. By using the variation of angle with the time acquired by an angular displacement sensor, the moment of inertia is obtained through the numerical solution of certain equations, which are deduced from the phase-plane analysis of compound pendulum. The influences of both friction and air resistance on the compound pendulum are already taken into consideration without estimating and measuring the resistances in advance. With this method, the to-be-measured object can be positioned and fixed easily and safely. Numerical simulations show a favorable precision of this method.展开更多
文摘A new measuring method──relative revolution principle,is introduced in dealing with friction moment measurement of a counter. The instrument manufactured based on this principle is efficient, accurate, and easy to operate, and a continuous dynamic measurement of an absolute friction moment is achieved intelligently. The principle is suitable to the measurement of friction moments of many kinds of elements and some special characteristics, and is of good engineering significance.
基金supported by the National Natural Science Foundation of China (Grant No. 52175120)the Science Center for Gas Turbine Project(Grant No. 2022-B-III-003)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University。
文摘Tapered roller bearings(TRBs) can withstand axial loads, radial loads, and overturning moments. The performance, safety, and efficiency of rotating machinery are directly influenced by the friction moments within the TRBs. However, most current research has relied on empirical formulas that focus on axial loads. Additionally, the friction coefficient between the rollers and the inner ring rib has been defined using simple empirical methods. In actual applications, the loads on TRBs are not purely axial or radial, and simple empirical friction coefficients do not adequately account for the varying lubrication conditions. To address this challenge, this study proposes an improved method for calculating the friction moments of TRB under combined axial and radial loads. This study employs a calculation method for sliding friction coefficients that can model dry, boundary, elastohydrodynamic, and mixed lubrication conditions. To demonstrate the advantages of the proposed method, the friction moments obtained using the existing and proposed methods are compared. Additionally, the influence of TRB structural parameters on the friction moment is discussed. An experimental study is conducted to validate the effectiveness of the proposed method. The findings provide valuable insights for designing TRB structural parameters to minimize friction moments.
基金supports from the National ‘‘the eleventh-five years’’ Projects of Science and Technology under contract (No. D09-0109-06-004) of ChinaInnovative Team Program of Universities in Shanghai of Shanghai Municipality Education Commission (No. B-48-0109-09-002) of China
文摘This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is to know the proportion of the friction moment caused by each frictional source in the bearing's total friction moment, which is helpful to optimize the bearing design to deduce the friction moment. In the model, the cage dynamic equations considering six degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved.The good trends with different loads between the measured friction moments and computational results prove that the model under constant rate was validated. The computational results show that when the speed was set at 5 r/min, the bearing's maximum total friction moment when oscillation occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory motion, the proportion of the friction moment caused by cage in the bearing's total friction moment was very high, and it increased with the increasing speed. The analyses of different cage thicknesses and different clearances between cage pocket and ball show that smaller thickness and clearance were preferred.
文摘A compound pendulum based measurement method is put forward and the relevant equipment is designed. By using the variation of angle with the time acquired by an angular displacement sensor, the moment of inertia is obtained through the numerical solution of certain equations, which are deduced from the phase-plane analysis of compound pendulum. The influences of both friction and air resistance on the compound pendulum are already taken into consideration without estimating and measuring the resistances in advance. With this method, the to-be-measured object can be positioned and fixed easily and safely. Numerical simulations show a favorable precision of this method.