A heterocyclic derivative of (2 sulphurone benzothiazole) 3 methyl dodecanoate was synthesized. Its tribological performance when added to liquid paraffin was evaluated on a four ball tester and a ring on block machin...A heterocyclic derivative of (2 sulphurone benzothiazole) 3 methyl dodecanoate was synthesized. Its tribological performance when added to liquid paraffin was evaluated on a four ball tester and a ring on block machine. Results indicate that compared with the base oil the wear resistance and load carrying capacities of the oil with novel additive are improved, and the friction coefficient is decreased. There is an optimal content of the novel compound, at which the corresponding oil gives the highest maximum non seizure load. Above the content, the load carrying capacity of the oil is not increased but decreased. The nature of the film formed on the rubbed surface was investigated by X ray photoelectron spectroscopy (XPS) analysis, and the action mechanism of the novel compound was discussed. [展开更多
This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres ...This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres via emulsion polymerization of styrene with cyanuric chloride as crosslinking agent,and then carbonization obtains N@MCNs.The as-prepared carbon nanospheres possess the complete spherical structure and adjustable nitrogen amount by controlling the relative proportion of tetrachloromethane and cyanuric chloride.The friction performance of N@MCNs as lubricating oil additives was surveyed utilizing the friction experiment of ball-disc structure.The results showed that N@MCNs exhibit superb reduction performance of friction and wear.When the addition of N@MCNs was 0.06 wt%,the friction coefficient of PAO-10 decreased from 0.188 to 0.105,and the wear volume reduced by 94.4%.The width and depth of wear marks of N@MCNs decreased by 49.2% and 94.5%,respectively.The carrying capacity of load was rocketed from 100 to 400 N concurrently.Through the analysis of the lubrication mechanism,the result manifested that the prepared N@MCNs enter clearance of the friction pair,transform the sliding friction into the mixed friction of sliding and rolling,and repair the contact surface through the repair effect.Furthermore,the tribochemical reaction between nanoparticles and friction pairs forms a protective film containing nitride and metal oxides,which can avert direct contact with the matrix and improve the tribological properties.This experiment showed that nitrogen-doped polystyrene-based carbon nanospheres prepared by in-situ doping are the promising materials for wear resistance and reducing friction.This preparing method can be ulteriorly expanded to multi-element co-permeable materials.Nitrogen and boron co-doped carbon nanospheres(B,N@MCNs)were prepared by mixed carbonization of N-enriched PS and boric acid,and exhibited high load carrying capacity and good tribological properties.展开更多
Nanomaterials as lubricating oil additives have attracted significant attention because of their designable composition and structure,suitable mechanical property,and tunable surface functionalities.However,the poor c...Nanomaterials as lubricating oil additives have attracted significant attention because of their designable composition and structure,suitable mechanical property,and tunable surface functionalities.However,the poor compatibility between nanomaterials and base oil limits their further applications.In this work,we demonstrated oil-soluble poly(lauryl methacrylate)(PLMA)brushes-grafted metal-organic frameworks nanoparticles(nanoMOFs)as lubricating oil additives that can achieve efficient friction reduction and anti-wear performance.Macroinitiators were synthesized by free-radical polymerization,which was coordinatively grafted onto the surface of the UiO-67 nanoparticles.Then,PLMA brushes were grown on the macroinitiator-modified UiO-67 by surface-initiated atom transfer radical polymerization,which greatly improved the lipophilic property of the UiO-67 nanoparticles and significantly enhanced the colloidal stability and long-term dispersity in both non-polar solvent and base oil.By adding UiO-67@PLMA nanoparticles into the 500 SN base oil,coefficient of friction and wear volume reductions of 45.3%and 75.5%were achieved due to their excellent mechanical properties and oil dispersibility.Moreover,the load-carrying capacity of 500 SN was greatly increased from 100 to 500 N by the UiO-67@PLMA additives,and their excellent tribological performance was demonstrated even at a high friction frequency of 65 Hz and high temperature of 120℃.Our work highlights oil-soluble polymer brushes-functionalized nanoMOFs for highly efficient lubricating additives.展开更多
Five kinds of 45# steel samples with concave features on the surface were manufactured using Laser Texturing Technology (LTT). Optimum design theory was used to design the experiment, and a two-level orthogonal table-...Five kinds of 45# steel samples with concave features on the surface were manufactured using Laser Texturing Technology (LTT). Optimum design theory was used to design the experiment, and a two-level orthogonal table-L 16 (2 15 ) design was adopted . Micro-wear and micro-friction experienced by samples with concave surface features and samples with smooth surfaces were compared experimentally. The wear resistance of samples with concave surface features was increased most, and different surface morphologies had different effects on friction and wear properties.展开更多
文摘A heterocyclic derivative of (2 sulphurone benzothiazole) 3 methyl dodecanoate was synthesized. Its tribological performance when added to liquid paraffin was evaluated on a four ball tester and a ring on block machine. Results indicate that compared with the base oil the wear resistance and load carrying capacities of the oil with novel additive are improved, and the friction coefficient is decreased. There is an optimal content of the novel compound, at which the corresponding oil gives the highest maximum non seizure load. Above the content, the load carrying capacity of the oil is not increased but decreased. The nature of the film formed on the rubbed surface was investigated by X ray photoelectron spectroscopy (XPS) analysis, and the action mechanism of the novel compound was discussed. [
基金supported by the National Natural Science Foundation of China(Nos.U21A2046 and 51972272)the Western Light Project of CAS(No.xbzg-zdsys-202118).
文摘This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres via emulsion polymerization of styrene with cyanuric chloride as crosslinking agent,and then carbonization obtains N@MCNs.The as-prepared carbon nanospheres possess the complete spherical structure and adjustable nitrogen amount by controlling the relative proportion of tetrachloromethane and cyanuric chloride.The friction performance of N@MCNs as lubricating oil additives was surveyed utilizing the friction experiment of ball-disc structure.The results showed that N@MCNs exhibit superb reduction performance of friction and wear.When the addition of N@MCNs was 0.06 wt%,the friction coefficient of PAO-10 decreased from 0.188 to 0.105,and the wear volume reduced by 94.4%.The width and depth of wear marks of N@MCNs decreased by 49.2% and 94.5%,respectively.The carrying capacity of load was rocketed from 100 to 400 N concurrently.Through the analysis of the lubrication mechanism,the result manifested that the prepared N@MCNs enter clearance of the friction pair,transform the sliding friction into the mixed friction of sliding and rolling,and repair the contact surface through the repair effect.Furthermore,the tribochemical reaction between nanoparticles and friction pairs forms a protective film containing nitride and metal oxides,which can avert direct contact with the matrix and improve the tribological properties.This experiment showed that nitrogen-doped polystyrene-based carbon nanospheres prepared by in-situ doping are the promising materials for wear resistance and reducing friction.This preparing method can be ulteriorly expanded to multi-element co-permeable materials.Nitrogen and boron co-doped carbon nanospheres(B,N@MCNs)were prepared by mixed carbonization of N-enriched PS and boric acid,and exhibited high load carrying capacity and good tribological properties.
基金the Research Fund of State Key Laboratory of Solidification Processing(NPU)(2022-QZ-04)the National Natural Science Foundations of China(52071270).
文摘Nanomaterials as lubricating oil additives have attracted significant attention because of their designable composition and structure,suitable mechanical property,and tunable surface functionalities.However,the poor compatibility between nanomaterials and base oil limits their further applications.In this work,we demonstrated oil-soluble poly(lauryl methacrylate)(PLMA)brushes-grafted metal-organic frameworks nanoparticles(nanoMOFs)as lubricating oil additives that can achieve efficient friction reduction and anti-wear performance.Macroinitiators were synthesized by free-radical polymerization,which was coordinatively grafted onto the surface of the UiO-67 nanoparticles.Then,PLMA brushes were grown on the macroinitiator-modified UiO-67 by surface-initiated atom transfer radical polymerization,which greatly improved the lipophilic property of the UiO-67 nanoparticles and significantly enhanced the colloidal stability and long-term dispersity in both non-polar solvent and base oil.By adding UiO-67@PLMA nanoparticles into the 500 SN base oil,coefficient of friction and wear volume reductions of 45.3%and 75.5%were achieved due to their excellent mechanical properties and oil dispersibility.Moreover,the load-carrying capacity of 500 SN was greatly increased from 100 to 500 N by the UiO-67@PLMA additives,and their excellent tribological performance was demonstrated even at a high friction frequency of 65 Hz and high temperature of 120℃.Our work highlights oil-soluble polymer brushes-functionalized nanoMOFs for highly efficient lubricating additives.
基金The authors are grateful for the financial support provided by the National High Technology Research and Development Program of China(863 Program)(No.2002AA331180)Trans-Century Training Program Foundation for the Talents by the Chinese Ministry of Education(No.20030720)+1 种基金the Foundation for Distin-guished Young Scholars of Jilin Province(Grant No.20040104)the Natural Science Foundation of Jilin Province(No.2002628-2).
文摘Five kinds of 45# steel samples with concave features on the surface were manufactured using Laser Texturing Technology (LTT). Optimum design theory was used to design the experiment, and a two-level orthogonal table-L 16 (2 15 ) design was adopted . Micro-wear and micro-friction experienced by samples with concave surface features and samples with smooth surfaces were compared experimentally. The wear resistance of samples with concave surface features was increased most, and different surface morphologies had different effects on friction and wear properties.