Owing to nonlinear contact problems with slip and friction, a lot of limiting assumptions are made when developing analytical models to simulate the behavior of an unbonded flexible riser. Meanwhile, in order to avoid...Owing to nonlinear contact problems with slip and friction, a lot of limiting assumptions are made when developing analytical models to simulate the behavior of an unbonded flexible riser. Meanwhile, in order to avoid convergence problems and excessive calculating time associated with running the detailed finite element (FE) model of an unbonded flexible riser, interlocked carcass and zeta layers with complicated cross section shapes are replaced by simple geometrical shapes (e.g. hollow cylindrical shell) with equivalent orthotropic materials. But the simplified model does not imply the stresses equivalence of these two layers. To solve these problems, based on ABAQUS/Explicit, a numerical method that is suitable for the detailed FE model is proposed. In consideration of interaction among all component layers, the axial stiffness of an eight-layer unbonded flexible riser subjected to axial tension is predicted. Compared with analytical and experimental results, it is shown that the proposed numerical method not only has high accuracy but also can substantially reduce the calculating time. In addition, the impact of the lay angle of helical tendons on axial stiffness is discussed.展开更多
This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and ...This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and equilibrium equations of forces and displacements of layers are deduced.The numerical model includes lay angle,cross-sectional profiles of carcass,pressure armor layer and contact between layers.Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities.Results show that local bending and torsion of helical strips may have great influence on torsional stiffness,but stress related to bending and torsion is negligible;the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress;hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model,which cannot be predicted by analytical model because of the ignorance of friction between layers.展开更多
Accurate information concerning riser inventory in a fluidized bed is required in some applications such as the calcium looping process, because it is related to the CO2 capture efficiency of the system. In a circulat...Accurate information concerning riser inventory in a fluidized bed is required in some applications such as the calcium looping process, because it is related to the CO2 capture efficiency of the system. In a circulating fluidized bed (CFB), the riser inventory is normally calculated from the riser pressure drop; however, the friction and the acceleration phenomena may have a significant influence on the total riser pressure drop. Therefore, deviation may occur in the calculation from the actual mass. For this reason the magnitude of the friction and the acceleration pressure drop in the entire riser is studied in small-scale risers. Two series of studies were performed: the first one in a scaled cold model riser of the 10 kWth facility, and the second one in the 10 kWth fluidized bed riser under process conditions. The velocities were chosen to comply with the fluidization regimes suitable for the calcium looping process, namely, the turbulent and the fast. In cold-model experiments in a low-velocity turbulent fluidization regime, the actual weight (static pressure drop) of the particles is observed more than the weight calculated from a recorded pressure drop. This phenomenon is also repeated in pilot plant conditions. In the cold-model setup, the friction and acceleration pressure drop became apparent in the fast fluidization regime, and increased as the gas velocity rose. Within calcium looping conditions in the pilot plant operation, the static pressure drop was observed more than the recorded pressure drop. Therefore, as a conservative approach, the influence of friction pressure drop may be neglected while calculating the solid inventory of the riser. The concept of transit inventory is introduced as a fraction of total inventory, which lies in freefall zones of the CFB system, This fraction increases as gas velocity rises.展开更多
基金financially supported by the Fund of State Key Laboratory of Ocean Engineering(Grant No.GKZD010059-6)
文摘Owing to nonlinear contact problems with slip and friction, a lot of limiting assumptions are made when developing analytical models to simulate the behavior of an unbonded flexible riser. Meanwhile, in order to avoid convergence problems and excessive calculating time associated with running the detailed finite element (FE) model of an unbonded flexible riser, interlocked carcass and zeta layers with complicated cross section shapes are replaced by simple geometrical shapes (e.g. hollow cylindrical shell) with equivalent orthotropic materials. But the simplified model does not imply the stresses equivalence of these two layers. To solve these problems, based on ABAQUS/Explicit, a numerical method that is suitable for the detailed FE model is proposed. In consideration of interaction among all component layers, the axial stiffness of an eight-layer unbonded flexible riser subjected to axial tension is predicted. Compared with analytical and experimental results, it is shown that the proposed numerical method not only has high accuracy but also can substantially reduce the calculating time. In addition, the impact of the lay angle of helical tendons on axial stiffness is discussed.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579146 and 51490674)Shanghai Municipal Natural Science Foundation(Grant No.15ZR1423500)Shanghai Rising-Star Program(Grant No.16QA1402300)
文摘This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and equilibrium equations of forces and displacements of layers are deduced.The numerical model includes lay angle,cross-sectional profiles of carcass,pressure armor layer and contact between layers.Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities.Results show that local bending and torsion of helical strips may have great influence on torsional stiffness,but stress related to bending and torsion is negligible;the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress;hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model,which cannot be predicted by analytical model because of the ignorance of friction between layers.
基金part of the ongoing CAL-MOD Project,which is funded in part by the RFCS Research Program of the European Commission(RFCR-CT-2010-00013)
文摘Accurate information concerning riser inventory in a fluidized bed is required in some applications such as the calcium looping process, because it is related to the CO2 capture efficiency of the system. In a circulating fluidized bed (CFB), the riser inventory is normally calculated from the riser pressure drop; however, the friction and the acceleration phenomena may have a significant influence on the total riser pressure drop. Therefore, deviation may occur in the calculation from the actual mass. For this reason the magnitude of the friction and the acceleration pressure drop in the entire riser is studied in small-scale risers. Two series of studies were performed: the first one in a scaled cold model riser of the 10 kWth facility, and the second one in the 10 kWth fluidized bed riser under process conditions. The velocities were chosen to comply with the fluidization regimes suitable for the calcium looping process, namely, the turbulent and the fast. In cold-model experiments in a low-velocity turbulent fluidization regime, the actual weight (static pressure drop) of the particles is observed more than the weight calculated from a recorded pressure drop. This phenomenon is also repeated in pilot plant conditions. In the cold-model setup, the friction and acceleration pressure drop became apparent in the fast fluidization regime, and increased as the gas velocity rose. Within calcium looping conditions in the pilot plant operation, the static pressure drop was observed more than the recorded pressure drop. Therefore, as a conservative approach, the influence of friction pressure drop may be neglected while calculating the solid inventory of the riser. The concept of transit inventory is introduced as a fraction of total inventory, which lies in freefall zones of the CFB system, This fraction increases as gas velocity rises.